量化学习平台
文章
市场宽度
背离图
登录
注册
科技与狠活
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/39961 # 标题:科技与狠活 # 作者:wywy1995 #导入函数库 from jqdata import * from jqfactor import get_factor_values import numpy as np import pandas as pd #初始化函数 def initialize(context): # 设定基准 set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #初始化全局变量 g.stock_num = 10 g.limit_days = 20 g.limit_up_list = [] g.hold_list = [] g.history_hold_list = [] g.not_buy_again_list = [] # 设置交易时间,每天运行 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_weekly(weekly_adjustment, weekday=1, time='9:40', reference_security='000300.XSHG') run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG') run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') #1-1 选股模块 def get_factor_filter_list(context,stock_list,jqfactor,sort,p1,p2): yesterday = context.previous_date score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist() df = pd.DataFrame(columns=['code','score']) df['code'] = stock_list df['score'] = score_list df = df.dropna() df.sort_values(by='score', ascending=sort, inplace=True) filter_list = list(df.code)[int(p1*len(df)):int(p2*len(df))] return filter_list #1-2 选股模块 def get_stock_list(context): yesterday = context.previous_date initial_list = get_all_securities().index.tolist() initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) initial_list_1 = filter_new_stock(context, initial_list, 250) #长期资产回报率小 test_list = get_factor_filter_list(context, initial_list_1, 'roa_ttm_8y', True, 0, 0.1) q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(test_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) df = df[df['eps']>0] roa_list = list(df.code)[:5] #每股留存收益小 test_list = get_factor_filter_list(context, initial_list_1, 'retained_earnings_per_share', True, 0, 0.1) q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(test_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) df = df[df['eps']>0] reps_list = list(df.code)[:5] #非线性市值小 initial_list_2 = filter_new_stock(context, initial_list, 125) test_list = get_factor_filter_list(context, initial_list_2, 'non_linear_size', True, 0, 0.1) q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(test_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) df = df[df['eps']>0] nls_list = list(df.code)[:5] #并集去重 union_list = list(set(roa_list).union(set(reps_list)).union(set(nls_list))) q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(union_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) final_list = list(df.code) return final_list #1-3 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取最近一段时间持有过的股票列表 g.history_hold_list.append(g.hold_list) if len(g.history_hold_list) >= g.limit_days: g.history_hold_list = g.history_hold_list[-g.limit_days:] temp_set = set() for hold_list in g.history_hold_list: for stock in hold_list: temp_set.add(stock) g.not_buy_again_list = list(temp_set) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.high_limit_list = list(df.code) else: g.high_limit_list = [] #1-4 整体调整持仓 def weekly_adjustment(context): #获取应买入列表 target_list = get_stock_list(context) target_list = filter_paused_stock(target_list) target_list = filter_limitup_stock(context, target_list) target_list = filter_limitdown_stock(context, target_list) #过滤最近买过且涨停过的股票 recent_limit_up_list = get_recent_limit_up_stock(context, target_list, g.limit_days) black_list = list(set(g.not_buy_again_list).intersection(set(recent_limit_up_list))) target_list = [stock for stock in target_list if stock not in black_list] #截取不超过最大持仓数的股票量 target_list = target_list[:min(g.stock_num, len(target_list))] #调仓卖出 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.high_limit_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == target_num: break #1-5 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.high_limit_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.high_limit_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 获取最近N个交易日内有涨停的股票 def get_recent_limit_up_stock(context, stock_list, recent_days): stat_date = context.previous_date new_list = [] for stock in stock_list: df = get_price(stock, end_date=stat_date, frequency='daily', fields=['close','high_limit'], count=recent_days, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] if len(df) > 0: new_list.append(stock) return new_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-7 过滤次新股 def filter_new_stock(context, stock_list, d): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=d)] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #3-4 交易模块-调仓 def adjust_position(context, buy_stocks, stock_num): for stock in context.portfolio.positions: if stock not in buy_stocks: log.info("[%s]不在应买入列表中" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]已经持有无需重复买入" % (stock)) position_count = len(context.portfolio.positions) if stock_num > position_count: value = context.portfolio.cash / (stock_num - position_count) for stock in buy_stocks: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == stock_num: break #4-1 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: