5年多因子超额收益1055%,K线风险过滤,无未来函数

策略 作者: 水滴
# 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。
# 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。
# 原文网址:https://www.joinquant.com/post/41175
# 标题:5年超额收益1055%,K线处理大阴线,无未来
# 作者:hello friends

import statsmodels.api as sm
from jqdata import *
from jqfactor import get_factor_values
import datetime

# 初始化函数
def initialize(context):
    # 设定基准
    set_benchmark('000905.XSHG')
    # 用真实价格交易
    set_option('use_real_price', True)
    # 打开防未来函数
    set_option("avoid_future_data", True)
    # 过滤掉order系列API产生的比error级别低的log
    log.set_level('order', 'error')
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')#设置买卖费用
    # 初始化全局变量
    g.stock_num = 5 #持股数
    g.limit_days = 20#用来检查最近20天内列表中有涨停的股票

    g.hold_list = []
    g.history_hold_list = []
    g.not_buy_again_list = []
    g.switch=0 #开关
    # 设置交易时间,每天运行
    run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG')
    #每天获取g.hold_list已持仓列表、g.not_buy_again_list20天内买过的接下来不买的股的列表、g.high_limit_list昨日涨停列表
    run_weekly(weekly_adjustment, weekday=1, time='9:30', reference_security='000300.XSHG')
    #每周获不多于12个股票的列表,去除最近20天内曾经涨停过的和曾经买过的股,去掉下跌趋势明显的
    run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG')
    #把昨日涨停今天没涨停的股票卖出
    run_daily(check_csy, time='09:30', reference_security='000300.XSHG')
    #把昨天长上影的股票卖出

# 1-1 选股模块
def get_single_factor_list(context, stock_list, jqfactor, sort, p1, p2):
    #这个函数是将股票列表按照选取的因子进行按高或者低排序,返回前p2比例的股票
    # type: (Context, list, str, bool, float, float) -> list
    yesterday = context.previous_date
    s_score = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1
                                )[jqfactor].iloc[0].dropna().sort_values(ascending=sort)
    return s_score.index[int(p1 * len(stock_list)):int(p2 * len(stock_list))].tolist()


def sorted_by_circulating_market_cap(stock_list, n_limit_top=5):#把股票列表按市值排序 取前5名
    q = query(
        valuation.code,
    ).filter(
        valuation.code.in_(stock_list),
        indicator.eps > 0
    ).order_by(
        valuation.circulating_market_cap.asc()
    ).limit(
        n_limit_top
    )
    return get_fundamentals(q)['code'].tolist()


# 1-2 选股模块:根据营业收入增长率、盈利增长率、PEG等因子找出并返回10个股票
def get_stock_list(context):
    # type: (Context) -> list
    # 去掉次新股
    by_date = context.previous_date - datetime.timedelta(days=375)
    initial_list = get_all_securities(date=by_date).index.tolist()
    # 去科创,ST
    initial_list = filter_kcb_stock(initial_list)
    initial_list = filter_st_stock(initial_list)

    # 1. SG 过去5年营业收入增长率, 从大到小的前10%;再按流通市值升序,取前5名
    sg_list = get_single_factor_list(context, initial_list, 'sales_growth', False, 0, 0.1)
    sg_list = sorted_by_circulating_market_cap(sg_list)

    # 2. MS 复合增长率, 从大到小的前10%;
    factor_list = [
        'operating_revenue_growth_rate',  # 营业收入TTM增长率
        'total_profit_growth_rate',
        'net_profit_growth_rate',
        'earnings_growth'# 5年盈利增长率
    ]
    factor_values = get_factor_values(initial_list, factor_list, end_date=context.previous_date, count=1)
    df = pd.DataFrame(index=initial_list)
    for factor in factor_list:
        df[factor] = factor_values[factor].iloc[0]
    df['total_score'] = 0.1* df['operating_revenue_growth_rate'] + 0.15 * df['total_profit_growth_rate'] + 0.15 * df[
        'net_profit_growth_rate'] + 0.6 * df['earnings_growth']
    ms_list = df.sort_values(by=['total_score'], ascending=False).index[:int(0.1 * len(df))].tolist()
    ms_list = sorted_by_circulating_market_cap(ms_list)

    # 3: PEG,升序前20%\TURNOVER_VOLATILITY,升序前50%;再按流通市值升序,取前5名
    peg_list = get_single_factor_list(context, initial_list, 'PEG', True, 0, 0.2)
    peg_list = get_single_factor_list(context, peg_list, 'turnover_volatility', True, 0, 0.5)
    peg_list = sorted_by_circulating_market_cap(peg_list)

    # 1、2、3的并集;再按流通市值升序,取前12名
    union_list = list(set(sg_list).union(set(ms_list)).union(set(peg_list)))
    union_list = sorted_by_circulating_market_cap(union_list, 12)
    print('选股结果:', union_list)
    return union_list


# 1-3 准备股票池
def prepare_stock_list(context):
    # 获取已持有列表
    g.hold_list = list(context.portfolio.positions)

    # 获取最近一段时间持有过的股票列表
    g.history_hold_list.append(g.hold_list)
    if len(g.history_hold_list) >= g.limit_days:
        g.history_hold_list = g.history_hold_list[-g.limit_days:]
    #
    temp_set = set()
    for hold_list in g.history_hold_list:
        temp_set = temp_set.union(set(hold_list))#通过set.union()去重
    #
    g.not_buy_again_list = list(temp_set)#不买最近20天买过的股票

    # 获取持仓的昨日涨停列表
    g.high_limit_list = []
    if g.hold_list:
        df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily',
                       fields=['close', 'high_limit', 'paused'],
                       count=1, panel=False)
        g.high_limit_list = df.query('close==high_limit and paused==0')['code'].tolist()#paused为0表示不停牌


# 1-4 整体调整持仓  
def weekly_adjustment(context):
    # type: (Context) -> None
    # 获取应买入列表
    target_list = get_stock_list(context)#获取不多于12个股票列表
    #
    target_list = filter_paused_stock(target_list)
    target_list = filter_limit_stock(context, target_list)

    # target_list中,去除最近20天内曾经涨停过的和曾经买过的股
    recent_limit_up_list = get_recent_limit_up_stock(context, target_list, g.limit_days)
    black_list = list(set(g.not_buy_again_list).intersection(set(recent_limit_up_list)))
    target_list = [stock for stock in target_list if stock not in black_list]

    if len(target_list) > 10:
        target_list = target_list[:10]

    # 最近20天的MA20的斜率,去掉下跌趋势明显的,即斜率<-2的
    h_ma = history(20 + 20, '1d', 'close', target_list).rolling(window=20).mean().iloc[20:]#df.rolling(window=?).mean()将DF的最近几个窗口(或值)进行滚动求平均
    #上面取最后20行
    X = np.arange(len(h_ma))#生成0、1、...19的数组
    tmp_target_list = []
    for stock in target_list:
        MA_N_Arr = h_ma[stock].values#得到每个股票最近20天的MA20数值
        MA_N_Arr = MA_N_Arr - MA_N_Arr[0]  # 截距归零,理解成标准化
        slope = round(sm.OLS(MA_N_Arr, X).fit().params[0] * 100, 1)# Statsmodels 中 OLS 回归功能sm.OLS(因变量,自变量),在 OLS之后调用拟合函数 fit(),
        #才进行回归运算,并且得到RegressionResultsWrapper结果,它包含了这组数据进行回归拟合的结果摘要。调用 params 可以查看计算出的回归系数 b0,b1,…,bn。
        #params[0]是为了去除列表,取具体值。sm.OLS(Y,X).fit().summary()可以看总体回归情况
        #print("测试%s"%sm.OLS(MA_N_Arr, X).fit().summary())
        remove_it = False
        if slope < -2:
            if stock not in g.hold_list:
                print('{}下降趋势明显,切勿开仓'.format(stock))
                remove_it = True
        if not remove_it:
            tmp_target_list.append(stock)
    target_list = tmp_target_list
   
   #把股票列表转为简称
    gupiao=[]
    for s in target_list:
        ss=get_security_info(s).display_name
        gupiao.append(ss)
    print("提示买的股票列表%s"%gupiao)
    # 调仓:不在列表,昨日未涨停的持仓票卖出。
    for stock in g.hold_list:
        if (stock not in target_list) and (stock not in g.high_limit_list):
            log.info("卖出[%s]" % stock)
            position = context.portfolio.positions[stock]
            close_position(position)
        else:
            log.info("已持有[%s]" % stock)

    position_count = len(context.portfolio.positions)
    target_num = g.stock_num
    if target_num > position_count:
        value =  context.portfolio.available_cash / (target_num - position_count)
        for stock in target_list:
            if stock not in context.portfolio.positions:
                if open_position(stock, value):
                    if len(context.portfolio.positions) >= g.stock_num:
                        break


# 1-5 调整昨日涨停股票
def check_limit_up(context):
    current_data = get_current_data()
    if g.high_limit_list:#if list: list非0非空,则为true
        for stock in g.high_limit_list:
            if current_data[stock].last_price < current_data[stock].high_limit:
                log.info("[%s]涨停打开,卖出" % stock)
                position = context.portfolio.positions[stock]
                close_position(position)
            else:
                log.info("[%s]涨停,继续持有" % stock)
#1-6 调整昨日大阴线的股票
def check_csy(context):
    if g.switch==0:
        g.switch=g.switch+1
    else:
        yesterday = context.previous_date
        dict_high=history(1, unit='1d', field='high', security_list=g.hold_list, df=False, skip_paused=False, fq='pre')
        dict_open=history(1,unit='1d', field='open', security_list=g.hold_list, df=False, skip_paused=False, fq='pre')
        dict_close=history(2, unit='1d', field='close', security_list=g.hold_list, df=False, skip_paused=False, fq='pre')
        # print(" 收盘价是:%s"%dict_close)
        for stock in g.hold_list:
            #昨日开盘涨幅
               kpzf=(dict_open[stock][0]-dict_close[stock][0])/dict_close[stock][0]
            #昨日收盘涨幅
               spzf=(dict_close[stock][1]-dict_close[stock][0])/dict_close[stock][0]
               print("%s股票昨日的收盘涨幅是%s"%(stock,spzf))
            #如果大阴线超过7%,则开盘卖出   
               if (kpzf-spzf)>0.068:
                  log.info("[%s]昨日大阴线,卖出" % stock)
                  position = context.portfolio.positions[stock]
                  close_position(position)
               else:
                   pass

# 2-1 过滤停牌股票
def filter_paused_stock(stock_list):
    current_data = get_current_data()
    return [stock for stock in stock_list if not current_data[stock].paused]


# 2-2 过滤ST及其他具有退市标签的股票
def filter_st_stock(stock_list):
    current_data = get_current_data()
    return [stock for stock in stock_list if not (
            current_data[stock].is_st or
            'ST' in current_data[stock].name or
            '*' in current_data[stock].name or
            '退' in current_data[stock].name)]


# 2-3 获取最近rencent_days个交易日内有涨停的股票列表
def get_recent_limit_up_stock(context, stock_list, recent_days):
    # type: (Context, list, int) -> list
    yesterday = context.previous_date
    h = get_price(stock_list, end_date=yesterday, frequency='daily', fields=['close', 'high_limit', 'paused'],
                  count=recent_days, panel=False)
    s_limit = h.query('close==high_limit and paused==0').groupby('code')['high_limit'].count()
    return s_limit.index.tolist()


# 2-4 过滤涨停的股票
def filter_limit_stock(context, stock_list):
    # type: (Context, list) -> list
    current_data = get_current_data()
    holdings = list(context.portfolio.positions)
    return [stock for stock in stock_list if (stock in holdings) or
            current_data[stock].low_limit < current_data[stock].last_price < current_data[stock].high_limit]


# 2-6 过滤科创板
def filter_kcb_stock(stock_list):
    return [stock for stock in stock_list if not stock.startswith('68')]


# 3-1 交易模块-自定义下单
def order_target_value_(security, value):
    if value == 0:
        log.debug("Selling out %s" % security)
    else:
        log.debug("Order %s to value %f" % (security, value))
    return order_target_value(security, value)


# 3-2 交易模块-开仓
def open_position(security, value):
    _order = order_target_value_(security, value)
    if _order is not None and _order.filled > 0:
        return True
    return False


# 3-3 交易模块-平仓
def close_position(position):
    security = position.security
    _order = order_target_value_(security, 0)  # 可能会因停牌失败
    if _order is not None:
        if _order.status == OrderStatus.held and _order.filled == _order.amount:
            return True
    return False
文章分类
关于作者
水滴

注册时间: