# 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。
# 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。
# 原文网址:https://www.joinquant.com/post/39774
# 标题:高股息低杠杆小市值轮动策略
# 作者:wywy1995
#导入函数库
from jqdata import *
from jqfactor import get_factor_values
import numpy as np
import pandas as pd
#初始化函数
def initialize(context):
# 设定基准
set_benchmark('000905.XSHG')
# 用真实价格交易
set_option('use_real_price', True)
# 打开防未来函数
set_option("avoid_future_data", True)
# 将滑点设置为0
set_slippage(FixedSlippage(0))
# 设置交易成本万分之三,不同滑点影响可在归因分析中查看
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund')
# 过滤order中低于error级别的日志
log.set_level('order', 'error')
#初始化全局变量
g.stock_num = 10
g.limit_days = 20
g.limit_up_list = []
g.hold_list = []
g.history_hold_list = []
g.not_buy_again_list = []
# 设置交易时间,每天运行
run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG')
run_weekly(weekly_adjustment, weekday=1, time='9:30', reference_security='000300.XSHG')
run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG')
run_daily(print_position_info, time='15:10', reference_security='000300.XSHG')
#1-1 根据最近一年分红除以当前总市值计算股息率并筛选
def get_dividend_ratio_filter_list(context, stock_list, sort, p1, p2):
time1 = context.previous_date
time0 = time1 - datetime.timedelta(days=365)
#获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合
interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000
list_len = len(stock_list)
#截取不超过interval的列表并查询
q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb
).filter(
finance.STK_XR_XD.a_registration_date >= time0,
finance.STK_XR_XD.a_registration_date <= time1,
finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)]))
df = finance.run_query(q)
#对interval的部分分别查询并拼接
if list_len > interval:
df_num = list_len // interval
for i in range(df_num):
q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb
).filter(
finance.STK_XR_XD.a_registration_date >= time0,
finance.STK_XR_XD.a_registration_date <= time1,
finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))]))
temp_df = finance.run_query(q)
df = df.append(temp_df)
dividend = df.fillna(0)
dividend = dividend.set_index('code')
dividend = dividend.groupby('code').sum()
temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list
#获取市值相关数据
q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list))
cap = get_fundamentals(q, date=time1)
cap = cap.set_index('code')
#计算股息率
DR = pd.concat([dividend, cap] ,axis=1, sort=False)
DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap']
#排序并筛选
DR = DR.sort_values(by=['dividend_ratio'], ascending=sort)
final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))]
return final_list
#1-2 选股模块
def get_stock_list(context):
yesterday = context.previous_date
initial_list = get_all_securities().index.tolist()
initial_list = filter_kcbj_stock(initial_list)
initial_list = filter_new_stock(context, initial_list, 375)
initial_list = filter_st_stock(initial_list)
#高股息(全市场最大25%)
dr_list = get_dividend_ratio_filter_list(context, initial_list, False, 0, 0.5)
#高波动(dr_list中过滤最小20%)
tv_list = get_factor_filter_list(context, dr_list, 'turnover_volatility', False, 0, 0.8)
#低负债(tv_list中保留最小50%)
lev_list = get_factor_filter_list(context, tv_list, 'MLEV', True, 0, 0.5)
#流通市值轮动
q = query(valuation.code, valuation.circulating_market_cap).filter(valuation.code.in_(lev_list)).order_by(valuation.circulating_market_cap.asc())
df = get_fundamentals(q, date=yesterday)
final_list = list(df.code)[:15]
return final_list
def get_factor_filter_list(context, stock_list, jqfactor, sort, p1, p2):
yesterday = context.previous_date
score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist()
df = pd.DataFrame(columns=['code','score'])
df['code'] = stock_list
df['score'] = score_list
df = df.dropna()
df.sort_values(by='score', ascending=sort, inplace=True)
filter_list = list(df.code)[int(p1*len(df)):int(p2*len(df))]
return filter_list
#1-3 准备股票池
def prepare_stock_list(context):
#获取已持有列表
g.hold_list= []
for position in list(context.portfolio.positions.values()):
stock = position.security
g.hold_list.append(stock)
#获取最近一段时间持有过的股票列表
g.history_hold_list.append(g.hold_list)
if len(g.history_hold_list) >= g.limit_days:
g.history_hold_list = g.history_hold_list[-g.limit_days:]
temp_set = set()
for hold_list in g.history_hold_list:
for stock in hold_list:
temp_set.add(stock)
g.not_buy_again_list = list(temp_set)
#获取昨日涨停列表
if g.hold_list != []:
df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False)
df = df[df['close'] == df['high_limit']]
g.high_limit_list = list(df.code)
else:
g.high_limit_list = []
#1-4 整体调整持仓
def weekly_adjustment(context):
#获取应买入列表
target_list = get_stock_list(context)
target_list = filter_paused_stock(target_list)
target_list = filter_limitup_stock(context, target_list)
target_list = filter_limitdown_stock(context, target_list)
print(len(target_list))
#截取不超过最大持仓数的股票量
target_list = target_list[:min(g.stock_num, len(target_list))]
#调仓卖出
for stock in g.hold_list:
if (stock not in target_list) and (stock not in g.high_limit_list):
log.info("卖出[%s]" % (stock))
position = context.portfolio.positions[stock]
close_position(position)
else:
log.info("已持有[%s]" % (stock))
#调仓买入
position_count = len(context.portfolio.positions)
target_num = len(target_list)
if target_num > position_count:
value = context.portfolio.cash / (target_num - position_count)
for stock in target_list:
if context.portfolio.positions[stock].total_amount == 0:
if open_position(stock, value):
if len(context.portfolio.positions) == target_num:
break
#1-5 调整昨日涨停股票
def check_limit_up(context):
now_time = context.current_dt
if g.high_limit_list != []:
#对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有
for stock in g.high_limit_list:
current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True)
if current_data.iloc[0,0] < current_data.iloc[0,1]:
log.info("[%s]涨停打开,卖出" % (stock))
position = context.portfolio.positions[stock]
close_position(position)
else:
log.info("[%s]涨停,继续持有" % (stock))
#2-1 过滤停牌股票
def filter_paused_stock(stock_list):
current_data = get_current_data()
return [stock for stock in stock_list if not current_data[stock].paused]
#2-2 过滤ST及其他具有退市标签的股票
def filter_st_stock(stock_list):
current_data = get_current_data()
return [stock for stock in stock_list
if not current_data[stock].is_st
and 'ST' not in current_data[stock].name
and '*' not in current_data[stock].name
and '退' not in current_data[stock].name]
#2-3 获取最近N个交易日内有涨停的股票
def get_recent_limit_up_stock(context, stock_list, recent_days):
stat_date = context.previous_date
new_list = []
for stock in stock_list:
df = get_price(stock, end_date=stat_date, frequency='daily', fields=['close','high_limit'], count=recent_days, panel=False, fill_paused=False)
df = df[df['close'] == df['high_limit']]
if len(df) > 0:
new_list.append(stock)
return new_list
#2-4 过滤涨停的股票
def filter_limitup_stock(context, stock_list):
last_prices = history(1, unit='1m', field='close', security_list=stock_list)
current_data = get_current_data()
return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
or last_prices[stock][-1] < current_data[stock].high_limit]
#2-5 过滤跌停的股票
def filter_limitdown_stock(context, stock_list):
last_prices = history(1, unit='1m', field='close', security_list=stock_list)
current_data = get_current_data()
return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
or last_prices[stock][-1] > current_data[stock].low_limit]
#2-6 过滤科创北交股票
def filter_kcbj_stock(stock_list):
for stock in stock_list[:]:
if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68':
stock_list.remove(stock)
return stock_list
#2-7 过滤次新股
def filter_new_stock(context, stock_list, d):
yesterday = context.previous_date
return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=d)]
#3-1 交易模块-自定义下单
def order_target_value_(security, value):
if value == 0:
log.debug("Selling out %s" % (security))
else:
log.debug("Order %s to value %f" % (security, value))
return order_target_value(security, value)
#3-2 交易模块-开仓
def open_position(security, value):
order = order_target_value_(security, value)
if order != None and order.filled > 0:
return True
return False
#3-3 交易模块-平仓
def close_position(position):
security = position.security
order = order_target_value_(security, 0) # 可能会因停牌失败
if order != None:
if order.status == OrderStatus.held and order.filled == order.amount:
return True
return False
#3-4 交易模块-调仓
def adjust_position(context, buy_stocks, stock_num):
for stock in context.portfolio.positions:
if stock not in buy_stocks:
log.info("[%s]不在应买入列表中" % (stock))
position = context.portfolio.positions[stock]
close_position(position)
else:
log.info("[%s]已经持有无需重复买入" % (stock))
position_count = len(context.portfolio.positions)
if stock_num > position_count:
value = context.portfolio.cash / (stock_num - position_count)
for stock in buy_stocks:
if context.portfolio.positions[stock].total_amount == 0:
if open_position(stock, value):
if len(context.portfolio.positions) == stock_num:
break
#4-1 打印每日持仓信息
def print_position_info(context):
#打印当天成交记录
trades = get_trades()
for _trade in trades.values():
print('成交记录:'+str(_trade))
#打印账户信息
for position in list(context.portfolio.positions.values()):
securities=position.security
cost=position.avg_cost
price=position.price
ret=100*(price/cost-1)
value=position.value
amount=position.total_amount
print('代码:{}'.format(securities))
print('成本价:{}'.format(format(cost,'.2f')))
print('现价:{}'.format(price))
print('收益率:{}%'.format(format(ret,'.2f')))
print('持仓(股):{}'.format(amount))
print('市值:{}'.format(format(value,'.2f')))
print('———————————————————————————————————')
print('———————————————————————————————————————分割线————————————————————————————————————————')
注册时间: