量化学习平台
文章
市场宽度
背离图
登录
注册
胜率65%之缩量分歧反包战法
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/34829 # 标题:胜率65%之缩量分歧反包战法 # 作者:游资小码哥 # 选择分钟回测 # 导入函数库 from jqdata import * # 初始化函数,设定基准等等 def initialize(context): # 设定沪深300作为基准 set_benchmark('000300.XSHG') # 开启动态复权模式(真实价格) set_option('use_real_price', True) # 输出内容到日志 log.info() log.info('初始函数开始运行且全局只运行一次') # 过滤掉order系列API产生的比error级别低的log # log.set_level('order', 'error') # g 内置全局变量 g.my_security = '510300.XSHG' set_universe([g.my_security]) g.help_stock = [] ### 股票相关设定 ### # 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱 set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock') ## 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的) # 开盘前运行 run_daily(before_market_open, time='before_open', reference_security='000300.XSHG') # 开盘时运行 run_daily(market_open, time='every_bar', reference_security='000300.XSHG') #run_daily(market_run_sell, time='every_bar', reference_security='000300.XSHG') # 收盘后运行before_open run_daily(after_market_close, time='after_close', reference_security='000300.XSHG') ## 开盘时运行函数 def market_open(context): time_buy = context.current_dt.strftime('%H:%M:%S') aday = datetime.datetime.strptime('13:00:00', '%H:%M:%S').strftime('%H:%M:%S') if len(g.help_stock) > 0 : for stock in g.help_stock: #log.info("当前时间 %s" % (context.current_dt)) #log.info("股票 %s 的最新价: %f" % (stock, get_current_data()[stock].last_price)) cash = context.portfolio.available_cash #print(cash) day_open_price = get_current_data()[stock].day_open current_price = get_current_data()[stock].last_price high_limit_price = get_current_data()[stock].high_limit pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money','pre_close']) pre_high_limit = df_panel['high_limit'].values pre_close = df_panel['close'].values pre_open = df_panel['open'].values pre_high = df_panel['high'].values pre_low = df_panel['low'].values pre_pre_close = df_panel['pre_close'].values now = context.current_dt zeroToday = now - datetime.timedelta(hours=now.hour, minutes=now.minute, seconds=now.second,microseconds=now.microsecond) lastToday = zeroToday + datetime.timedelta(hours=9, minutes=31, seconds=00) df_panel_allday = get_price(stock, start_date=lastToday, end_date=context.current_dt, frequency='minute', fields=['high','low','close','high_limit','money']) low_allday = df_panel_allday.loc[:,"low"].min() high_allday = df_panel_allday.loc[:,"high"].max() sum_plus_num_two = (df_panel_allday.loc[:,'close'] == df_panel_allday.loc[:,'high_limit']).sum() ##当前持仓有哪些股票 if cash > 5000 : if current_price > pre_close * 1.05 and day_open_price > pre_close and current_price > day_open_price and current_price > low_allday * 1.03 and current_price < high_limit_price: print("1."+stock+"买入金额"+str(cash)) orders = order_value(stock, cash) if str(orders.status) == 'held': g.help_stock.remove(stock) time_sell = context.current_dt.strftime('%H:%M:%S') cday = datetime.datetime.strptime('14:40:00', '%H:%M:%S').strftime('%H:%M:%S') sell_day = datetime.datetime.strptime('11:10:00', '%H:%M:%S').strftime('%H:%M:%S') sell_day_10 = datetime.datetime.strptime('13:30:00', '%H:%M:%S').strftime('%H:%M:%S') if time_sell > cday: stock_owner = context.portfolio.positions if len(stock_owner) > 0: for stock_two in stock_owner: if context.portfolio.positions[stock_two].closeable_amount > 0: current_price_list = get_ticks(stock_two,start_dt=None, end_dt=context.current_dt, count=1, fields=['time', 'current', 'high', 'low', 'volume', 'money']) current_price = current_price_list['current'][0] day_open_price = get_current_data()[stock_two].day_open day_high_limit = get_current_data()[stock_two].high_limit now = context.current_dt zeroToday = now - datetime.timedelta(hours=now.hour, minutes=now.minute, seconds=now.second,microseconds=now.microsecond) lastToday = zeroToday + datetime.timedelta(hours=9, minutes=31, seconds=00) df_panel_allday = get_price(stock_two, start_date=lastToday, end_date=context.current_dt, frequency='minute', fields=['high','low','close','high_limit','money']) low_allday = df_panel_allday.loc[:,"low"].min() high_allday = df_panel_allday.loc[:,"high"].max() sum_plus_num_two = (df_panel_allday.loc[:,'close'] == df_panel_allday.loc[:,'high_limit']).sum() ##获取前一天的收盘价 pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock_two, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','low',]) pre_low_price =df_panel['low'].values pre_close_price =df_panel['close'].values #平均持仓成本 cost = context.portfolio.positions[stock_two].avg_cost if current_price < high_allday * 0.92 and day_open_price > pre_close_price: print("1.卖出股票:小于最高价0.869倍"+str(stock_two)) order_target(stock_two, 0) elif current_price > cost * 1.3 and sum_plus_num_two < 80: print("2.卖出股票:亏8个点"+str(stock_two)) order_target(stock_two, 0) elif day_open_price < pre_close_price * 0.98 and current_price < pre_close_price * 0.93: print("3.卖出股票:1.3以下"+str(stock_two)) order_target(stock_two, 0) else: stock_owner = context.portfolio.positions if len(stock_owner) > 0: for stock_two in stock_owner: if context.portfolio.positions[stock_two].closeable_amount > 0: current_price_list = get_ticks(stock_two,start_dt=None, end_dt=context.current_dt, count=1, fields=['time', 'current', 'high', 'low', 'volume', 'money']) current_price = current_price_list['current'][0] day_open_price = get_current_data()[stock_two].day_open day_high_limit = get_current_data()[stock_two].high_limit ##获取前一天的收盘价 pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock_two, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','low',]) pre_low_price =df_panel['low'].values pre_close_price =df_panel['close'].values now = context.current_dt zeroToday = now - datetime.timedelta(hours=now.hour, minutes=now.minute, seconds=now.second,microseconds=now.microsecond) lastToday = zeroToday + datetime.timedelta(hours=9, minutes=31, seconds=00) df_panel_allday = get_price(stock_two, start_date=lastToday, end_date=context.current_dt, frequency='minute', fields=['high','low','close','high_limit','money']) low_allday = df_panel_allday.loc[:,"low"].min() high_allday = df_panel_allday.loc[:,"high"].max() sum_plus_num_two = (df_panel_allday.loc[:,'close'] == df_panel_allday.loc[:,'high_limit']).sum() current_price = context.portfolio.positions[stock_two].price #持仓股票的当前价 cost = context.portfolio.positions[stock_two].avg_cost df_panel_three = get_price(stock_two, count = 2, end_date=context.current_dt, frequency='minute', fields=['high','low','close','pre_close','high_limit','money']) df_min_close_three = df_panel_three['close'].iloc[0] df_max_close_three = df_panel_three['close'].iloc[1] if current_price < cost * 0.91: print("6.卖出股票:亏5个点"+str(stock_two)) order_target(stock_two, 0) elif day_open_price < pre_close_price * 0.92 and current_price > pre_close_price * 0.97: print("add.高位放量,请走!"+str(day_open_price)) order_target(stock_two, 0) elif high_allday > pre_close_price * 1.09 and current_price < day_open_price and day_open_price < day_high_limit * 0.95 and current_price < cost * 1.2: print("8.高位放量,请走!"+str(day_open_price)) order_target(stock_two, 0) elif current_price > cost * 1.25 and current_price < day_high_limit * 0.95 and time_sell > sell_day: print("9.挣够25%,高位放量,请走!"+str(day_open_price)) order_target(stock_two, 0) elif current_price < high_allday * 0.93 and high_allday > pre_close_price * 1.06 and time_sell > sell_day_10: print("11.挣够25%,高位放量,请走!"+str(day_open_price)) order_target(stock_two, 0) elif df_max_close_three < df_min_close_three * 0.95 and current_price < pre_close_price * 0.98: print("11.挣够25%,高位放量,请走!"+str(day_open_price)) order_target(stock_two, 0) def send_micromessage(result_in): #调用send_message send_message(result_in) ## 选出连续涨停超过3天的,最近一天是阴板的 def before_market_open(context): date_now = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() yesterday = (context.current_dt + timedelta(days = -90)).strftime("%Y-%m-%d") trade_date = get_trade_days(start_date=yesterday, end_date=date_now, count=None) stocks = list(get_all_securities(['stock']).index) end_date = trade_date[trade_date.size-1] pre_date = trade_date[trade_date.size-3] #选出昨天是涨停板的个股 continuous_price_limit = pick_high_limit(stocks,end_date,pre_date) filter_st_stock = filter_st(continuous_price_limit) templist = filter_stock_by_days(context,filter_st_stock,150) print("选出的连扳股票") print(templist) for stock in templist: ##查询昨天的股票是否阴板 stock_date=trade_date[trade_date.size-2] df_panel = get_price(stock, count = 1,end_date=stock_date, frequency='daily', fields=['open', 'close','high_limit','money','low','high','pre_close']) df_close = df_panel['close'].values df_high = df_panel['high'].values df_low = df_panel['low'].values df_open = df_panel['open'].values df_pre_close = df_panel['pre_close'].values df_high_limit = df_panel['high_limit'].values df_money = df_panel['money'].values #查询昨天的close价格 df_panel_yes = get_price(stock, count = 1,end_date=end_date, frequency='daily', fields=['open', 'close','high_limit','money','low','high','pre_close'],skip_paused=True) df_close_yes = df_panel_yes['close'].values df_money_yes = df_panel_yes['money'].values # if stock == '600956.XSHG': # print(df_open) # print(df_close) # print(df_high) # print(df_money_yes) # print(df_money * 0.65) pre_date_two = trade_date[trade_date.size-8] if df_close < df_high_limit * 0.98: g.help_stock.append(stock) print("被选出的股票为:") print(g.help_stock) ##选出打板的股票 def pick_high_limit(stocks,end_date,pre_date): df_panel = get_price(stocks, count = 1,end_date=end_date, frequency='daily', fields=['open', 'close','high_limit','money','pre_close','low']) df_close = df_panel['close'] df_open = df_panel['open'] df_high_limit = df_panel['high_limit'] df_pre_close = df_panel['pre_close'] df_low = df_panel['low'] high_limit_stock = [] for stock in (stocks): _high_limit = (df_high_limit[stock].values) _close = (df_close[stock].values) _open = (df_open[stock].values) _pre_close = (df_pre_close[stock].values) _low = (df_low[stock].values) if(stock[0:3] == '300'): continue if _high_limit == _close and _close > _pre_close * 1.02: df_panel_2 = get_price(stock, count = 2,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','pre_close'],skip_paused=True) sum_plus_num_2 = (df_panel_2.loc[:,'close'] == df_panel_2.loc[:,'high_limit']).sum() df_panel_10 = get_price(stock, count = 10,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','pre_close'],skip_paused=True) sum_plus_num_10 = (df_panel_10.loc[:,'close'] == df_panel_10.loc[:,'high_limit']).sum() if sum_plus_num_2 == 2 and sum_plus_num_10 <= 5: if _open > _pre_close * 1.04: high_limit_stock.append(stock) return high_limit_stock # def turn_ratio(stock,end_date): # q = query(valuation.day,valuation.code,valuation.turnover_ratio).filter(valuation.code == stock,valuation.day == end_date).limit(1) # aa=finance.run_query(q) # #print(aa) # return aa #换手率 ##去除st的股票 def filter_st(codelist): current_data = get_current_data() codelist = [code for code in codelist if not current_data[code].is_st] return codelist ##过滤上市时间不满1080天的股票 def filter_stock_by_days(context, stock_list, days): tmpList = [] for stock in stock_list : days_public=(context.current_dt.date() - get_security_info(stock).start_date).days if days_public > days: tmpList.append(stock) return tmpList ## 收盘后运行函数 def after_market_close(context): log.info(str('函数运行时间(after_market_close):'+str(context.current_dt.time()))) #得到当天所有成交记录 g.help_stock = [] log.info('一天结束') log.info('##############################################################') ```
文章分类
关于作者
水滴
注册时间: