量化学习平台
文章
市场宽度
背离图
登录
注册
四年多翻9倍,年化73%,成长因子评分筛选
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/42677 # 标题:四年多翻9倍,年化73%,成长因子评分筛选 # 作者:wolfman # 回测资金 200000 # 三个成长因子评分后,筛选,每周调仓。年化达70% # 导入函数库 from jqdata import * from jqfactor import * import pandas as pd #初始化函数 def initialize(context): #设定股票池 set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #选股参数 g.stock_num = 5 #持仓数 g.no_trading_today_signal = False g.hold_list = [] #当前持仓的全部股票 # 设置交易时间,每天运行 run_weekly(my_trade, weekday=1, time='9:30', reference_security='000300.XSHG') run_daily(close_account, '14:30') run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') #1-1 选股模块 #先根据资产负债排除一些股票,再选出roe改善最多的列表,最后在这个列表中根据pb轮动 def get_stock_list(context): yesterday = str(context.previous_date) initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context,initial_list) initial_list = filter_kcb_stock(context, initial_list) initial_list = filter_st_stock(initial_list) factor_values = get_factor_values(initial_list, ['operating_revenue_growth_rate', #营业收入增长率 'total_profit_growth_rate', #利润总额增长率 'earnings_growth', #5年盈利增长率 ], end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) df['operating_revenue_growth_rate'] = list(factor_values['operating_revenue_growth_rate'].T.iloc[:,0]) df['total_profit_growth_rate'] = list(factor_values['total_profit_growth_rate'].T.iloc[:,0]) df['earnings_growth'] = list(factor_values['earnings_growth'].T.iloc[:,0]) df['total_score'] = 0.2*df['operating_revenue_growth_rate'] + 0.4*df['total_profit_growth_rate'] + 0.4*df['earnings_growth'] df = df.sort_values(by=['total_score'], ascending=False) complex_growth_list = list(df.index)[:int(0.1*len(list(df.index)))] q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(complex_growth_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) df = df[df['eps']>0] final_list = list(df.code) return final_list #1-2 开盘前打印自选股 def print_stock_list_before_open(context): stock_list = get_stock_list(context) stock_list = filter_paused_stock(stock_list) stock_list = stock_list[:g.stock_num] print('今日自选股:{}'.format(stock_list)) #2-1 开盘时运行函数 def my_trade(context): #判断今天是否为账户资金再平衡的日期 g.no_trading_today_signal = today_is_between(context, '04-05', '04-30') g.hold_list= list(context.portfolio.positions.keys()) if g.no_trading_today_signal: return check_out_list = get_stock_list(context) check_out_list = filter_limitup_stock(context, check_out_list) check_out_list = filter_limitdown_stock(context, check_out_list) check_out_list = filter_paused_stock(check_out_list) check_out_list = check_out_list[:g.stock_num] adjust_position(context, check_out_list) #3-1 交易函数 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: order_target(stock, 0) log.info("卖出[%s]" % (stock)) def adjust_position(context, buy_stocks): for stock in context.portfolio.positions: if stock not in buy_stocks: log.info("[%s]不在应买入列表中" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]已经持有无需重复买入" % (stock)) position_count = len(context.portfolio.positions) if g.stock_num > position_count: value = context.portfolio.cash / (g.stock_num - position_count) for stock in buy_stocks: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == g.stock_num: break #4-1 过滤函数 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] def filter_kcb_stock(context, stock_list): return [stock for stock in stock_list if stock[0:3] != '688'] def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)] #4-1 判断今天是否为账户资金再平衡的日期 def today_is_between(context, start_date, end_date): today = context.current_dt.strftime('%m-%d') return start_date <= today <= end_date #5-1 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: