量化学习平台
文章
市场宽度
背离图
登录
注册
FOF养老成长基金-v2.0
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问建议到原文和作者交流讨论。 # 克隆自聚宽文章:https://www.joinquant.com/post/24542 # 标题:FOF养老成长基金-v2.0 # 作者:富在知足 import numpy as np import talib import pandas import scipy as sp import scipy.optimize import datetime as dt from scipy import linalg as sla from scipy import spatial def initialize(context): set_benchmark('000300.XSHG') # 设置买卖手续费,万三,最小 5 元 set_commission(PerTrade(buy_cost=0.0003, sell_cost=0.0003, min_cost=5)) set_slippage(FixedSlippage(0.002)) set_option('use_real_price', True) # enable_profile() # 关闭部分 log.set_level('order', 'error') # 交易系数 context.tradeRatio = {} # 交易收益率 context.positionDict = {} # 仓位(未使用) context.position = {} # 需要进行盘整巩固 context.initPriceDict = {} # 上次交易日所获取的平均值 context.transactionRecord = {} def handle_data(context, data): # 初始化交易数据 initializeStockDict(context) # 进行仓位调整 rebalance(context) # 获取买卖决策 message = "" for stock in context.pool: if context.tradeRatio[stock] > 0: message += buyOrSellCheck(context,stock,3,1.4) # 此段代码仅用于发微信,可以跳过 if message != "": send_message(message) # 每周进行一次调仓操作 if getLastestTransactTime(context): tradeStockDict(context, context.tradeRatio) if context.doneTrade: print(("\n" + context.ratioMessage)) # initialize parameters def initializeStockDict(context): # 每天注入400元资金 inout_cash(400, pindex=0) # 是否进行了交易操作 context.doneTrade = False # 需要进行过渡交易 context.Transitional = True # 定义调仓周期 context.weekDay = { 4 } # 置信区间 context.confidenceLevel = 0.02 # 定义参考周期 context.referenceCycle = 250 # 涨跌幅度 context.maxRange = 30 # 巩固幅度 context.consolidation = 5 # 持仓数量 context.stockCount = 5 # 入选参考 context.referStock = '000002.XSHG' # 入选条件 context.minPosition = 0 # 持仓位数 context.Multiple = 1 # 最小持仓比例 context.minRatio = 0.10 * context.Multiple # 最大持仓比例 context.maxRatio = 0.30 * context.Multiple # 最小交易金额 context.minAmount = 2000 # 网格交易率(%) context.netRate = 3 # 定义交易标的 context.stockDict = {} # 分析标的 context.trackStock = '' # 其余仓位 context.bondStock = '163210.XSHE' # 权重系数:1~10 context.stockDict['515520.XSHG'] = 10 # 价值100 context.stockDict['161907.XSHE'] = 10 # 中证红利 context.stockDict['512890.XSHG'] = 10 # 红利低波 context.stockDict['515300.XSHG'] = 10 # 红利300 context.stockDict['510050.XSHG'] = 10 # 上证50 context.stockDict['159916.XSHE'] = 10 # 深证60 context.stockDict['512910.XSHG'] = 10 # 中证100 context.stockDict['510310.XSHG'] = 10 # 沪深300 context.stockDict['512260.XSHG'] = 10 # 中证500低波 context.stockDict['512090.XSHG'] = 10 # MSCI context.stockDict['515000.XSHG'] = 10 # 中证科技 context.stockDict['512040.XSHG'] = 10 # 中证价值 context.stockDict['510900.XSHG'] = 10 # 恒生国企 context.stockDict['501021.XSHG'] = 10 # 香港中小 context.stockDict['513050.XSHG'] = 10 # 中概互联 context.stockDict['518880.XSHG'] = 4 # 黄金 # context.stockDict['515520.XSHG'] = 10 # 价值100 # context.stockDict['501029.XSHG'] = 10 # 标普红利 # context.stockDict['161907.XSHE'] = 10 # 中证红利 # context.stockDict['512890.XSHG'] = 10 # 红利低波 # context.stockDict['515300.XSHG'] = 10 # 红利300 # context.stockDict['510900.XSHG'] = 10 # 恒生国企 # context.stockDict['501021.XSHG'] = 10 # 香港中小 # context.stockDict['501050.XSHG'] = 10 # 上证50AH # context.stockDict['159916.XSHE'] = 10 # 深证60 # context.stockDict['159949.XSHE'] = 10 # 创业50 # context.stockDict['510310.XSHG'] = 10 # 沪深300 # context.stockDict['512270.XSHG'] = 10 # 沪深300低波 # context.stockDict['510580.XSHG'] = 10 # 中证500 # context.stockDict['512260.XSHG'] = 10 # 中证500低波 # context.stockDict['512090.XSHG'] = 10 # MSCI # context.stockDict['515000.XSHG'] = 10 # 中证科技 # context.stockDict['512040.XSHG'] = 10 # 中证价值 # context.stockDict['513050.XSHG'] = 10 # 中概互联 # context.stockDict['518880.XSHG'] = 5 # 黄金 # context.stockDict['512590.XSHG'] = 10 # 高股息 # context.stockDict['513100.XSHG'] = 10 # 纳斯达克 # context.stockDict['512910.XSHG'] = 10 # 中证100 # context.stockDict['512750.XSHG'] = 10 # 基本面50 # context.stockDict['160105.XSHE'] = 10 # 南方积配 # context.stockDict['160125.XSHE'] = 10 # 南方香港 # context.stockDict['160212.XSHE'] = 10 # 国泰估值 # context.stockDict['160215.XSHE'] = 10 # 国泰价值 # context.stockDict['160311.XSHE'] = 10 # 华夏蓝筹 # context.stockDict['160314.XSHE'] = 10 # 华夏行业 # context.stockDict['160505.XSHE'] = 10 # 博时主题 # context.stockDict['160716.XSHE'] = 10 # 嘉实50 # context.stockDict['160916.XSHE'] = 10 # 优选LOF # context.stockDict['161005.XSHE'] = 10 # 富国天惠 # context.stockDict['162605.XSHE'] = 10 # 景顺鼎益 # context.stockDict['162607.XSHE'] = 10 # 景顺资源 # context.stockDict['162703.XSHE'] = 10 # 广发小盘 # context.stockDict['163110.XSHE'] = 10 # 申万量化 # context.stockDict['163402.XSHE'] = 10 # 兴全趋势 # context.stockDict['163412.XSHE'] = 10 # 兴全轻资 # context.stockDict['165313.XSHE'] = 10 # 建信优势 # context.stockDict['167001.XSHE'] = 10 # 平安鼎泰 # context.stockDict['169101.XSHE'] = 10 # 东证睿丰 # context.stockDict['501001.XSHG'] = 10 # 财通精选 # context.stockDict['501015.XSHG'] = 10 # 财通升级 # context.stockDict['501021.XSHG'] = 10 # 香港中小 # context.stockDict['501301.XSHG'] = 10 # 香港大盘 # context.stockDict['501305.XSHG'] = 10 # 香港高息 # context.stockDict['510050.XSHG'] = 10 # 上证50 # context.stockDict['510300.XSHG'] = 10 # 沪深300 # context.stockDict['510500.XSHG'] = 10 # 中证500 # context.stockDict['512550.XSHG'] = 10 # 富时50A # context.stockDict['512990.XSHG'] = 10 # MSCI # context.stockDict['510880.XSHG'] = 10 # 上证红利 # context.stockDict['512040.XSHG'] = 10 # 国信价值 # context.stockDict['510900.XSHG'] = 10 # 恒生国企 # context.stockDict['501029.XSHG'] = 10 # 红利基金 # context.stockDict['501310.XSHG'] = 10 # 价值基金 # context.stockDict['501069.XSHG'] = 10 # 质量基金 # context.stockDict['501050.XSHG'] = 10 # 50AH # context.stockDict['513050.XSHG'] = 10 # 中概互联 # context.stockDict['513100.XSHG'] = 10 # 纳斯达克 # context.stockDict['513030.XSHG'] = 10 # 德国30 # context.stockDict['513500.XSHG'] = 10 # 标普500 # context.stockDict['159905.XSHE'] = 10 # 深红利 # context.stockDict['159949.XSHE'] = 10 # 创业50 # context.stockDict['501025.XSHG'] = 10 # 香港银行 # context.stockDict['159928.XSHE'] = 10 # 消费 # context.stockDict['159938.XSHE'] = 10 # 医药 # context.stockDict['512400.XSHG'] = 10 # 有色 # context.stockDict['512580.XSHG'] = 10 # 环保 # context.stockDict['512680.XSHG'] = 10 # 军工 # context.stockDict['512800.XSHG'] = 10 # 银行 # context.stockDict['512880.XSHG'] = 10 # 证券 # context.stockDict['512070.XSHG'] = 10 # 非银 # context.stockDict['512980.XSHG'] = 10 # 传媒 # context.stockDict['510230.XSHG'] = 10 # 上证金融 # context.stockDict['501018.XSHG'] = 10 # 石油 # context.stockDict['518880.XSHG'] = 10 # 黄金 # context.stockDict['168103.XSHE'] = 10 # 九泰锐益 # context.stockDict['163417.XSHE'] = 10 # 兴全合宜 # context.stockDict['169105.XSHE'] = 10 # 东证睿华 # 上市不足参考周期的剔除掉 context.stockDict = delNewStock(context, context.stockDict) # 整理能交易的标的 context.pool = list(context.stockDict.keys()) # 持仓数量 if (len(context.pool) < context.stockCount): context.stockCount = len(context.pool) # 统计交易资料 for stock in context.pool: if stock not in context.initPriceDict: context.initPriceDict[stock] = 0 if stock not in context.positionDict: context.positionDict[stock] = 0 if stock not in context.transactionRecord: context.transactionRecord[stock] = 0 # 初始化交易记录 context.tradeRecord = "" # 初始化权重记录 context.ratioMessage = "" def getStockRSIRatio(stock): try: # 根据周来计算出RSI系数 if ratio > 0: nRSI = 60 nRSIAvg = 5 his = attribute_history(stock, 300, '1d', 'close', skip_paused=True, df=False, fq='pre') closeArray = his['close'] # 计算RSI # rsiArray = talib.RSI(closeArray,nRSI) # RSI均值 # rsiAvgArrayS = talib.MA(rsiArray,nRSIAvg) rsiAvgArrayL = talib.MA(rsiArray,nRSI) rsiRatio = 100 - np.round(math.tan(math.radians(rsiAvgArrayS[-1] - (50.0 if math.isnan(rsiAvgArrayL[-1]) else rsiAvgArrayL[-1]))) * 50,0) if rsiRatio < 0: rsiRatio = 0 return rsiRatio else: return 0 except: return 50; def getStockRSI(stock): # 根据周来计算出RSI系数 # 计算RSI所用天数 try: nRSI = 7 his = attribute_history(stock, 30, "1d", ("close","high","low"), skip_paused=True, df=False, fq="pre") closeArray = his["close"] rsiArray = talib.RSI(closeArray,nRSI) return np.round(rsiArray[-1],2) except Exception as err: return 100 def getLastestTransactTime(context): # 定义调仓周期 # 只会有月初进行操作 lastestDate = datetime.datetime(2000, 1, 1) # 获取最后一次交易日期 for stock in list(context.portfolio.positions.keys()): if (context.portfolio.positions[stock].transact_time > lastestDate): lastestDate = context.portfolio.positions[stock].transact_time if (context.current_dt - lastestDate).days >= 30 and context.current_dt.isoweekday() in context.weekDay: return True return False def getStockName(stock): return get_security_info(stock).display_name def drawCloseValue(stock): his=attribute_history(stock, 1, '1d','close',df=False, skip_paused=False) record(C=his['close'][0]) def variance(stock): # 计算平均涨跌幅 his=attribute_history(stock, 120, '1d','close',df=False, skip_paused=False) trList=[] for i in range(len(his['close'])): if i>0: trList.append(abs(his['close'][i-1]-his['close'][i])/his['close'][i-1]*100) trArray=np.array(trList) trMean = trArray.mean() return np.round(trMean,1) if not isnan(trMean) else 0 def getAvgMoney(stock): # 计算平均成交额 his=attribute_history(stock, 120, '1d','money',df=False, skip_paused=False) trMean = his['money'].mean() return np.round(trMean,1) if not isnan(trMean) else 0 def delNewStock(context, stockDict): # 剔除上市时间较短的产品 deltaDate = context.current_dt.date() - dt.timedelta(300) tmpDict = {} for stock in list(stockDict.keys()): if get_security_info(stock).start_date < deltaDate: avgMoney = getAvgMoney(stock) if avgMoney >= 2000000: tmpDict[stock] = stockDict[stock] return tmpDict # 每天开盘前用于判断某一只etf今日该买还是该卖的函数 # # 此函数输入为一个股票代码,应卖出时输出-1,应买进时输出1 # def buyOrSellCheck(context, stock, nATRValue, nstdValue): message = "" try: # 计算RSI所用天数 nRSI = 7 nRSIAvg = 14 nATR = 21 # 取得近90天的历史行情数据 deltaDate = context.current_dt.date() - datetime.timedelta(90) if get_security_info(stock).start_date > deltaDate: return message his = attribute_history(stock, 120, '1d', ('close','high','low'), skip_paused=True, df=False, fq='pre') closeArray = his['close'] # 计算长线是60天(月) emaArray = talib.MA(closeArray,60) # 计算RSI # rsiArray = talib.RSI(closeArray,nRSI) # RSI均值 # rsiAvgArray = talib.MA(rsiArray,nRSIAvg) # RSI标准差 # rsiStdArray = talib.STDDEV(rsiArray,nRSIAvg) # ATR # trList = [] for i in range(len(closeArray)): if i>0: trList.append(max([(his['high'][i]-his['low'][i]),abs(his['close'][i-1]-his['high'][i]),abs(his['close'][i-1]-his['low'][i])])) trArray = np.array(trList) atrAvgArray = talib.MA(trArray,nATR) ATR = nATRValue*atrAvgArray[-1] # 买入的阈值 # buyThreshold = rsiAvgArray[-1]-nstdValue*rsiStdArray[-1] if buyThreshold>30: buyThreshold = 30 # 卖出的阈值 # sellThreshold = rsiAvgArray[-1]+nstdValue*rsiStdArray[-1] if sellThreshold<70: sellThreshold = 70 # 获取溢价率 # premiumRate = getPremiumRate(context, stock) #record(RA=sellThreshold,RB=rsiArray[-1],RC=buyThreshold) #record(TA=closeArray[-2]+ATR,TB=closeArray[-1],TC=closeArray[-2]-ATR) # 当天出现超过3%的跌幅时,禁止任何操盘 if stopLoss(stock): message=getStockName(stock)+" : "+"禁止操作!\n" elif premiumRate>=0.5: message=getStockName(stock)+" : "+"溢价["+str(premiumRate)+"]!\n" elif premiumRate<=-1.0: message=getStockName(stock)+" : "+"折价["+str(premiumRate)+"]!\n" # 如果RSI高于卖出阈值,则卖出股票 elif rsiArray[-1]>sellThreshold: message=getStockName(stock)+" : "+"RSI["+str(np.round(rsiArray[-1],2))+">"+str(np.round(sellThreshold,2))+"]卖出!\n" # 如果RSI低于买入阈值,则买入股票 elif rsiArray[-1]<buyThreshold: message=getStockName(stock)+" : "+"RSI["+str(np.round(rsiArray[-1],2))+"<"+str(np.round(buyThreshold,2))+"]买入!\n" # 如果ATR高于卖出阈值,则卖出股票 elif closeArray[-1]>closeArray[-2]+ATR: message=getStockName(stock)+" : "+"ATR["+str(np.round(closeArray[-1],2))+">"+str(np.round(emaArray[-1],2))+"]卖出!\n" # 如果ATR低于买入阈值,则买入股票 elif closeArray[-1]<closeArray[-2]-ATR: message=getStockName(stock)+" : "+"ATR["+str(np.round(closeArray[-1],2))+"<"+str(np.round(emaArray[-1],2))+"]买入!\n" except: message="" return message def stopLoss(stock, lag=2, loss=2, more=4): # 当跌幅大于2%时禁止当天交易,以观望的方式等待下一个交易日,防止股灾出现时仍连接交易 # hisArray=attribute_history(stock,lag,'1d',('open', 'close', 'high', 'low', 'volume'),skip_paused=True) closeArray=hisArray['close'].values rate=abs((closeArray[-1]-closeArray[-2])/closeArray[-2]*100) if (rate>loss and rate<more): return True else: return False def getPremiumRate(context, stock): # 计算基金当前的溢价情况 # try: now = context.current_dt start_date = now + datetime.timedelta(days=-10) end_date = now + datetime.timedelta(days=-1) unitPriceArray = get_extras('unit_net_value', stock, start_date=start_date, end_date=end_date, df=False) unitPrice = unitPriceArray[stock][-1] his = attribute_history(stock, 5, '1d', 'close', skip_paused=True, df=False, fq='pre') closePrice = his['close'][-1] return np.round((closePrice - unitPrice) / unitPrice * 100, 2) except: return 0 def rebalance(context): # 重新调整仓位 tradeRatio = caltradeStockRatio(context) context.tradeRatio = tradeRatio def caltradeStockRatio(context): def getGrowthRate(stock, n=21): # 获取股票n日以来涨幅,根据当前价计算 lc = attribute_history(stock, n, '1d', ('close'), True)['close'][0] c = attribute_history(stock, 1, '1d', ('close'), True)['close'][0] if not isnan(lc) and not isnan(c) and lc != 0: return (c - lc) / lc * 100 else: return 0 def calstockRiskVaR(stock): # 风险价值(VaR) portfolio_VaR = 0.0000001 dailyReturns = fun_getdailyreturn(stock, '1d', context.referenceCycle) portfolio_VaR = 1 * context.confidenceLevel * np.std(dailyReturns) * 100 if isnan(portfolio_VaR): portfolio_VaR = 0.0000001 return 1#portfolio_VaR def calstockRiskES(stock): # 期望损失(ES) portfolio_ES = 0 dailyReturns = fun_getdailyreturn(stock, '1d', context.referenceCycle) dailyReturns_sort = sorted(dailyReturns) count = 0 sum_value = 0 for i in range(len(dailyReturns_sort)): if i < (context.referenceCycle * context.confidenceLevel): sum_value += dailyReturns_sort[i] count += 1 if count == 0: portfolio_ES = 0 else: portfolio_ES = -(sum_value / (context.referenceCycle * context.confidenceLevel)) if isnan(portfolio_ES): portfolio_ES = 0 return portfolio_ES def fun_getdailyreturn(stock, freq, lag): stockHis = history(lag, freq, 'close', stock, df=True) #dailyReturns = stockHis.resample('D',how='last').pct_change().fillna(value=0, method=None, axis=0).values dailyReturns = stockHis.resample('D').last().pct_change().fillna(value=0, method=None, axis=0).values return dailyReturns def fun_caltraderatio(tradeRatio, stock, position, total_position): if stock in tradeRatio: tradeRatio[stock] += np.round((position / total_position), 3) else: tradeRatio[stock] = np.round((position / total_position), 3) tradeRatio[stock] = tradeRatio[stock] * 100 // context.Multiple * context.Multiple / 100 return tradeRatio # 计算所有标的的仓位比例 max_ES = -1 max_VaR = -1 ESDict = {} VaRDict = {} grDict = {} for stock in context.pool: ES = calstockRiskES(stock) if ES > max_ES: max_ES = ES ESDict[stock] = ES VaR = calstockRiskVaR(stock) if VaR > max_VaR: max_VaR = VaR VaRDict[stock] = VaR grDict[stock] = getGrowthRate(stock) # 计算入选条件 referES = calstockRiskES(context.referStock) referVar = calstockRiskVaR(context.referStock) referGR = getGrowthRate(context.referStock) referPosition = np.round((max_ES / referES) * (max_VaR / referVar) * power(1.02, referGR) * 100, 3) if context.minPosition == 0: context.minPosition = referPosition else: context.minPosition = (referPosition + context.minPosition) / 2 # 计算总仓位 positionDict = {} for stock in context.pool: if ESDict[stock] == 0: positionDict[stock] = 0 else: stockRatio = context.stockDict[stock] positionDict[stock] = np.round((max_ES / ESDict[stock]) * (max_VaR / VaRDict[stock]) * power(1.02, grDict[stock]) * stockRatio * 10,3) # 与上次交易的平均值再进行一次平均值计算 if context.transactionRecord[stock] == 0: context.transactionRecord[stock] = positionDict[stock] else: positionDict[stock] = positionDict[stock] * 0.8 + context.transactionRecord[stock] * 0.2 context.transactionRecord[stock] = positionDict[stock] positionDictSorted = sorted(list(positionDict.items()), key=lambda d: d[1], reverse = True) # 针对边际标的进行如果持仓则继续持仓 stockIn = "" stockOut = "" doChange = False if len(positionDictSorted) > context.stockCount and context.Transitional: stockIn = positionDictSorted[(context.stockCount - 1)][0] stockOut = positionDictSorted[context.stockCount][0] doChange = stockIn not in context.portfolio.positions and stockOut in context.portfolio.positions # 如果需要进行边际交换操作时,仍需要判断交易的标的是否满足过滤条件 if doChange: if np.round(positionDict[stockIn] - context.minPosition, 2) < 0 or np.round(positionDict[stockOut] - context.minPosition, 2) < 0: doChange = False # 把排前列的标的选择出来 positionDict.clear() index = 1 for (key,value) in positionDictSorted: if context.initPriceDict[key] == 0 and abs(grDict[key]) >= context.maxRange: # 近期涨跌幅度过大需要盘整巩固 context.initPriceDict[key] = 1 elif context.initPriceDict[key] == 1 and abs(grDict[key]) < context.consolidation: # 盘整巩固解除封闭 context.initPriceDict[key] = 0 # 涨跌幅过大需要等待一个周期后再解解封闭 if context.initPriceDict[key] == 1: positionDict[key] = 0 else: # 针对边际标的进行如果持仓则继续持仓 if doChange and (key == stockIn or key == stockOut): if key == stockIn: positionDict[key] = 0 elif key == stockOut: positionDict[key] = value elif index <= context.stockCount: positionDict[key] = value else: positionDict[key] = 0 index += 1 total_position = 0 for stock in context.pool: total_position += positionDict[stock] if total_position == 0: total_position = 1 # 计算所有标的的系数 ratio = {} profitDict = {} for stock in context.pool: # 未超过入选条件时不进行交易 stockPosition = positionDict[stock] # 如果RSI出现超卖情况时,不进行卖出操作 RSI = getStockRSI(stock) if RSI > 30 and np.round(stockPosition - context.minPosition, 2) < 0: stockPosition = 0 ratio = fun_caltraderatio(ratio, stock, stockPosition, total_position) # 计算持仓收益率 if stock in context.portfolio.positions: profitDict[stock] = (context.portfolio.positions[stock].price - context.portfolio.positions[stock].avg_cost) / context.portfolio.positions[stock].avg_cost * 100 else: profitDict[stock] = 0 # 踢去持仓比例低于要求的标换 if context.trackStock != "": record(T=1) drawCloseValue(context.trackStock) for stock in context.pool: if ratio[stock] < context.minRatio and ratio[stock] > 0: ratio[stock] = 0 elif ratio[stock] > context.maxRatio: ratio[stock] = context.maxRatio if context.trackStock == stock: if ratio[stock] > 0: record(T=1.5) else: record(T=1) sumRatio = 0 index = 1 adjustment = np.round(context.stockCount * 1.0 / 2 / 100, 2) for (key,value) in positionDictSorted: if ratio[key] > 0: ratio[key] = adjustment + ratio[key] adjustment -= 0.01 try: context.ratioMessage += "%2d.%s:%3d/%3d(%2d%%/%1.1f%%/%1.1f%%/%1.1f%%/%1.2f%%) %s\n"%(index,key,positionDict[key],value,ratio[key]*100,variance(key),grDict[key],context.positionDict[key]+profitDict[key],getPremiumRate(context, key),getStockName(key)) except: context.ratioMessage += "%2d.%s"%(index,key) sumRatio += ratio[key] index += 1 if index > (context.stockCount + 2): break; # 增加债券 ratio[context.bondStock] = 0 context.positionDict[context.bondStock] = 1 try: context.ratioMessage += "合计:%3d%%,%3d,"%(sumRatio*100,context.minPosition) if (1 - sumRatio) > 0.2: ratio[context.bondStock] = (1 - sumRatio) except: context.ratioMessage += "合计:%3d%%,%3d,"%(0,context.minPosition) context.ratioMessage += "累计金额:%d,可用资金:%d,总资产:%d\n"%(context.portfolio.inout_cash,context.portfolio.available_cash,context.portfolio.total_value) # 计算当前仓位 if context.trackStock == '': record(P=(sumRatio*100)) record(B=(ratio[context.bondStock]*100)) return ratio def tradeStockDict(context, buyDict): def tradeStock(context, stock, ratio): total_value = context.portfolio.total_value curPrice = history(1,'1d', 'close', stock, df=False)[stock][-1] curValue = 0 if stock in context.portfolio.positions: curValue = context.portfolio.positions[stock].total_amount * curPrice quota = total_value * ratio # 平仓后记录实际收益率 if quota == 0 and curValue > 0: if stock in context.portfolio.positions: context.positionDict[stock] += np.round((curPrice - context.portfolio.positions[stock].avg_cost) / context.portfolio.positions[stock].avg_cost * 100, 2) else: context.positionDict[stock] = curPrice deltaValue = np.round(abs(quota - curValue) / 1000, 0) * 1000 if deltaValue >= context.minAmount or (quota == 0 and curValue > 0): order_target_value(stock, quota) context.doneTrade = True buylist = list(buyDict.keys()) hStocks = history(1, '1d', 'close', buylist, df=False) myholdstock = list(context.portfolio.positions.keys()) portfolioValue = context.portfolio.portfolio_value # 已有仓位 holdDict = {} hholdstocks = history(1, '1d', 'close', myholdstock, df=False) for stock in myholdstock: tmpW = np.round((context.portfolio.positions[stock].total_amount * hholdstocks[stock])/portfolioValue, 2) holdDict[stock] = float(tmpW) # 对已有仓位做排序 tmpDict = {} for stock in holdDict: if stock in buyDict: tmpDict[stock] = np.round((buyDict[stock] - holdDict[stock]), 2) else: tmpDict[stock] = -999999 tradeOrder = sorted(list(tmpDict.items()), key=lambda d:d[1], reverse=False) # 先卖掉持仓减少的标的 tmpList = [] for idx in tradeOrder: stock = idx[0] if stock in buyDict: tradeStock(context, stock, buyDict[stock]) else: tradeStock(context, stock, 0) tmpList.append(stock) # 交易其他股票 for i in range(len(buylist)): stock = buylist[i] if len(tmpList) != 0 : if stock not in tmpList: tradeStock(context, stock, buyDict[stock]) else: tradeStock(context, stock, buyDict[stock]) ```
文章分类
关于作者
水滴
注册时间: