量化学习平台
文章
市场宽度
背离图
登录
注册
龙头首阴战法改版二
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/36382 # 标题:龙头首阴战法改版二 # 作者:游资小码哥 # 回测设置为 分钟 运行 # 导入函数库 from jqdata import * from jqlib.technical_analysis import * # 初始化函数,设定基准等等 def initialize(context): # 设定沪深300作为基准 set_benchmark('000300.XSHG') # 开启动态复权模式(真实价格) set_option('use_real_price', True) # 输出内容到日志 log.info() log.info('初始函数开始运行且全局只运行一次') # 过滤掉order系列API产生的比error级别低的log # log.set_level('order', 'error') # g 内置全局变量 g.my_security = '510300.XSHG' set_universe([g.my_security]) g.help_stock = [] g.help_stock_sell = [] ### 股票相关设定 ### # 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱 set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock') ## 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的) # 开盘前运行 run_daily(before_market_open_all, time='before_open', reference_security='000300.XSHG') # 开盘时运行 run_daily(market_open, time='every_bar', reference_security='000300.XSHG') #run_daily(market_run_sell, time='every_bar', reference_security='000300.XSHG') #收盘后运行before_open run_daily(after_market_close, time='after_close', reference_security='000300.XSHG') def before_market_open_all(context): before_market_open(context) help_stock_msg = "今日选出股票:" help_stock_msg_one = "龙头首阴战法:" if len(g.help_stock) > 0: for stock in g.help_stock: help_stock_msg_one = help_stock_msg_one + stock + "; " help_stock_msg = help_stock_msg + help_stock_msg_one # sell类型 help_stock_msg_sell = "#今日持仓的股票:" help_stock_msg_one_sell = "--龙头首阴战法持仓:" if len(g.help_stock_sell) > 0: for stock in g.help_stock_sell: help_stock_msg_one_sell = help_stock_msg_one_sell + stock + "; " help_stock_msg_sell = help_stock_msg_sell + help_stock_msg_one_sell ##每日买卖持仓 print(help_stock_msg) print(help_stock_msg_sell) ## 开盘时运行函数 def market_open(context): #First 龙头 首阴战法 market_open_one(context) def market_open_one(context): time_buy = context.current_dt.strftime('%H:%M:%S') aday_one = datetime.datetime.strptime('09:40:00', '%H:%M:%S').strftime('%H:%M:%S') aday_two = datetime.datetime.strptime('11:20:00', '%H:%M:%S').strftime('%H:%M:%S') if len(g.help_stock) > 0: for stock in g.help_stock: #log.info("当前时间 %s" % (context.current_dt)) #log.info("股票 %s 的最新价: %f" % (stock, get_current_data()[stock].last_price)) cash = context.portfolio.available_cash #print(cash) current_price = get_current_data()[stock].last_price day_open_price = get_current_data()[stock].day_open day_high_limit = get_current_data()[stock].high_limit pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money']) pre_high_limit = df_panel['high_limit'].values pre_close = df_panel['close'].values pre_high = df_panel['high'].values pre_low = df_panel['low'].values #First-buy ##当前持仓有哪些股票 if cash > 20000 : if current_price > pre_high_limit * 0.99 and current_price > pre_close * 1.03 and day_open_price > pre_close * 1.07 and pre_close < pre_high_limit and current_price < day_high_limit: print("1."+stock+"买入金额"+str(cash)) orders = order_value(stock, cash) if str(orders.status) == 'held': g.help_stock.remove(stock) g.help_stock_sell.append(stock) elif current_price > pre_high_limit * 0.99 and time_buy > aday_one and time_buy < aday_two and current_price > day_open_price and current_price > pre_close * 1.03 and day_open_price > pre_low and pre_close < pre_high_limit and current_price < day_high_limit: print("2."+stock+"买入金额"+str(cash)) orders = order_value(stock, cash) if str(orders.status) == 'held': g.help_stock.remove(stock) g.help_stock_sell.append(stock) elif pre_close == pre_high_limit and current_price > pre_high_limit * 1.06 and day_open_price > pre_high_limit * 0.95 and time_buy < aday_two and current_price < day_high_limit: print("2."+stock+"买入金额"+str(cash)) orders = order_value(stock, cash) if str(orders.status) == 'held': g.help_stock.remove(stock) g.help_stock_sell.append(stock) time_sell = context.current_dt.strftime('%H:%M:%S') cday = datetime.datetime.strptime('14:40:00', '%H:%M:%S').strftime('%H:%M:%S') if time_sell > cday: stock_owner = context.portfolio.positions if len(stock_owner) > 0 and len(g.help_stock_sell) > 0: for stock_two in stock_owner: if context.portfolio.positions[stock_two].closeable_amount > 0: #current_price_list = get_ticks(stock_two,start_dt=None, end_dt=context.current_dt, count=1, fields=['time', 'current', 'high', 'low', 'volume', 'money']) current_price = get_current_data()[stock_two].last_price day_open_price = get_current_data()[stock_two].day_open day_high_limit = get_current_data()[stock_two].high_limit day_low_limit = get_current_data()[stock_two].low_limit #查询当天的最高价 df = get_price(stock_two, start_date=context.portfolio.positions[stock_two].init_time,end_date=context.current_dt, frequency='minute', fields=['close'],skip_paused=True) df_max_high = df["close"].max() df_min_high = df["close"].min() ##获取前一天的收盘价 pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock_two, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','low',]) pre_low_price =df_panel['low'].values pre_close_price =df_panel['close'].values df_panel_2 = get_price(stock_two, count = 2,end_date=pre_date, frequency='daily', fields=['high', 'close','high_limit','money'],skip_paused=True) sum_plus_num_2 = (df_panel_2.loc[:,'close'] == df_panel_2.loc[:,'high_limit'] ).sum() #平均持仓成本 cost = context.portfolio.positions[stock_two].avg_cost if current_price < df_max_high * 0.869 and day_open_price > pre_close_price and current_price > day_low_limit: print("1.卖出股票:小于最高价0.869倍") orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif current_price < cost * 0.92 and current_price > day_low_limit: print("卖出股票:亏8个点") orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif current_price < cost * 1.2 and current_price < df_max_high * 0.92 and day_open_price < df_max_high * 0.968 and current_price < day_open_price and current_price > day_low_limit: print("3.卖出股票:1.3以下") orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif df_min_high/df_max_high < 0.86 and current_price < cost * 1.20 and df_min_high < pre_close_price * 0.95 and current_price < day_open_price and current_price < pre_close_price and current_price > day_low_limit: print("4.炸板卖出股票:开盘价为"+str(day_open_price)) orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif current_price > cost * 1.30 and current_price < df_max_high * 0.95 and current_price > df_min_high * 1.05 and sum_plus_num_2 == 2 and current_price > pre_close_price and current_price > day_low_limit: print("#4.炸板卖出股票:开盘价为"+str(day_open_price)) orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) else: stock_owner = context.portfolio.positions if len(stock_owner) > 0 and len(g.help_stock_sell) > 0: for stock_two in stock_owner: if context.portfolio.positions[stock_two].closeable_amount > 0: current_price = get_current_data()[stock_two].last_price day_open_price = get_current_data()[stock_two].day_open day_high_limit = get_current_data()[stock_two].high_limit day_low_limit = get_current_data()[stock_two].low_limit #查询当天的最高价 df = get_price(stock_two, start_date=context.portfolio.positions[stock_two].init_time,end_date=context.current_dt, frequency='minute', fields=['high'],skip_paused=True) df_max_high = df["high"].max() ##获取前一天的收盘价 pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock_two, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','low',]) pre_low_price =df_panel['low'].values pre_close_price =df_panel['close'].values num_limit_stock = count_limit_num_all(stock_two,context) #查看是否连续涨停超过5次,只有后面低于前一交易日就卖 num_limit_stock_two = count_limit_num(stock_two,context) df = get_price(stock_two, start_date=context.portfolio.positions[stock_two].init_time,end_date=context.previous_date, frequency='minute', fields=['close'],skip_paused=True) df_max_high = df["close"].max() #从买入至今的最高价 current_price = context.portfolio.positions[stock_two].price #持仓股票的当前价 cost = context.portfolio.positions[stock_two].avg_cost if num_limit_stock >= 12 and current_price < df_max_high * 0.95 and day_open_price > pre_close_price and current_price > day_low_limit: print("5.卖出股票:12个板以上"+str(num_limit_stock)) orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif current_price < cost * 0.92 and current_price > day_low_limit: print("6.卖出股票:亏8个点"+str(num_limit_stock)) orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif num_limit_stock_two > 5 and day_open_price < pre_close_price * 1.01 and current_price > 1.3 * cost and current_price < pre_close_price * 0.95 and current_price > day_low_limit: print("7.查看是否连续涨停超过5次,只有后面低于前一交易日就卖"+str(num_limit_stock_two)) orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) elif day_open_price == day_high_limit and current_price < pre_close_price and current_price > day_low_limit: print("8.高位放量,请走!"+str(day_open_price)) orders = order_target(stock_two, 0) if str(orders.status) == 'held': g.help_stock_sell.remove(stock_two) ## 龙头首阴战法 def before_market_open(context): date_now = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() yesterday = (context.current_dt + timedelta(days = -90)).strftime("%Y-%m-%d") trade_date = get_trade_days(start_date=yesterday, end_date=date_now, count=None) stocks = list(get_all_securities(['stock']).index) end_date = trade_date[trade_date.size-1] pre_date = trade_date[trade_date.size-2] continuous_price_limit = pick_high_limit(stocks,pre_date) filter_st_stock = filter_st(continuous_price_limit) templist = filter_stock_by_days(context,filter_st_stock,1080) pre_date_six = trade_date[trade_date.size-6] # print("选出的连扳股票") # print(templist) for stock in templist: ##查询昨天的股票是否阴板和阳板 stock_date=trade_date[trade_date.size-1] df_panel = get_price(stock, count = 1,end_date=stock_date, frequency='daily', fields=['open', 'close','high_limit','money','low','high','pre_close']) df_close = df_panel['close'].values df_high = df_panel['high'].values df_low = df_panel['low'].values df_open = df_panel['open'].values df_pre_close = df_panel['pre_close'].values df_high_limit = df_panel['high_limit'].values df_panel_8 = get_price(stock, count = 8,end_date=end_date, frequency='daily', fields=['high', 'close','high_limit','money'],skip_paused=True) sum_plus_num_8 = (df_panel_8.loc[:,'close'] == df_panel_8.loc[:,'high_limit'] ).sum() #查询大前天的close价格 if df_close < df_high * 0.976 and df_close >= df_pre_close and df_open == df_high: number_stock = count_limit_num(stock,context) if stock == '603069.XSHG': print("---------hahahahahha-------") print(number_stock) print(sum_plus_num_8) if number_stock >=2 and sum_plus_num_8 <= 6: g.help_stock.append(stock) elif df_open < 0.95 * df_high and df_close == df_high_limit and df_open > df_pre_close * 0.986 and df_low < df_pre_close * 0.92 and df_close == df_high_limit: df_panel_30 = get_price(stock, count = 30,end_date=pre_date_six, frequency='daily', fields=['high', 'close','high_limit','money'],skip_paused=True) sum_plus_num_30 = (df_panel_30.loc[:,'close'] == df_panel_30.loc[:,'high_limit'] ).sum() if sum_plus_num_8 <=5 and sum_plus_num_30 <= 4: g.help_stock.append(stock) # print("---------(锤型结构)典型案例三:被选出的股票为:---------") # print(g.help_stock) ##查看他的连扳天数,还需要不涨停的时候,前面的交易日是非涨停的 def count_limit_num(stock,context): date_now = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() yesterday = (context.current_dt + timedelta(days = -50)).strftime("%Y-%m-%d") df_panel_close = get_price(stock, count = 1,end_date=date_now, frequency='daily', fields=['open', 'close','high','money']) df_close_now = df_panel_close['high'].values if stock == '603069.XSHG': print("日期") print(date_now) print(df_close_now) trade_date = get_trade_days(start_date=yesterday, end_date=date_now, count=None) limit_num = 0 date_size = 3 trade_date_break = (context.current_dt).strftime("%Y-%m-%d") #print(trade_date) for datenum in trade_date: pre_date=trade_date[trade_date.size-date_size] pre_date_two=trade_date[trade_date.size-date_size-1] # if stock == '600812.XSHG': # print("002819.XSHE") # print(pre_date) # print(pre_date_two) #查询当天的 df_panel = get_price(stock, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money']) df_close = df_panel['close'].values df_high_limit = df_panel['high_limit'].values #查询前一天的 df_panel_two = get_price(stock, count = 1,end_date=pre_date_two, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_two = df_panel_two['close'].values df_high_limit_two = df_panel_two['high_limit'].values # if stock == '600983.XSHG': # print(stock+"pre_date="+str(pre_date)+"df_close="+str(df_close)+"df_high_limit="+str(df_high_limit)) if df_close == df_high_limit and df_close > df_close_two * 1.05: limit_num = limit_num + 1 date_size = date_size + 1 else: trade_date_break = trade_date[trade_date.size-date_size] pre_trade_date_break = trade_date[trade_date.size-date_size-1] df_panel_pre = get_price(stock, count = 1,end_date=pre_trade_date_break, frequency='daily', fields=['open', 'close','high_limit','money','pre_close']) df_close_pre = df_panel_pre['close'].values df_high_limit_pre = df_panel_pre['high_limit'].values df_pre_close = df_panel_pre['pre_close'].values if df_close_pre == df_high_limit_pre and df_close_pre > df_pre_close * 1.05: limit_num =0 df_panel_all = get_price(stock, count = 250,end_date=trade_date_break, frequency='daily', fields=['high', 'close','high_limit','money']) high_allday = df_panel_all.loc[:,"high"].max() if df_close_now < high_allday: limit_num =0 #启动前之前不能大于3个板 df_panel_30 = get_price(stock, count = 30,end_date=trade_date_break, frequency='daily', fields=['high', 'close','high_limit','money'],skip_paused=True) low_allday = df_panel_all.loc[:,"close"].min() sum_plus_num_two = (df_panel_30.loc[:,'close'] == df_panel_30.loc[:,'high_limit']).sum() # close_high_allday = df_panel_all.loc[:,"close"].max() # close_low_allday = df_panel_all.loc[:,"close"].min() # rate_30 = (close_high_allday - close_low_allday) #count_limit_num = count_limit_num_before(stock,trade_date_break) if sum_plus_num_two > 4: limit_num = 0 break return limit_num ##查看他总的涨停数 def count_limit_num_all(stock,context): date_now = (context.current_dt+ timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() yesterday = (context.current_dt + timedelta(days = -30)).strftime("%Y-%m-%d") trade_date = get_trade_days(start_date=yesterday, end_date=date_now, count=None) limit_num = 0 for datenum in trade_date: df_panel = get_price(stock, count = 1,end_date=datenum, frequency='daily', fields=['open', 'close','high_limit','money']) df_close = df_panel['close'].values df_high_limit = df_panel['high_limit'].values if df_close == df_high_limit: limit_num = limit_num + 1 return limit_num ##查看他总的涨停数 def count_limit_num_before(stock,date_come): #date_now = datetime.datetime.strptime(date_come, '%Y-%m-%d') #date_now = date_come.strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() start_date = (datetime.datetime.strptime(date_come.strftime('%Y-%m-%d'), '%Y-%m-%d') + timedelta(days = -30)).strftime("%Y-%m-%d") trade_date = get_trade_days(start_date=start_date, end_date=date_come, count=None) limit_num = 0 #print(date_come) for datenum in trade_date: df_panel = get_price(stock, count = 1,end_date=datenum, frequency='daily', fields=['open', 'close','high_limit','money','pre_close']) df_close = df_panel['close'].values df_high_limit = df_panel['high_limit'].values df_pre_close = df_panel['pre_close'].values if df_close == df_high_limit and df_close > df_pre_close * 1.05: limit_num = limit_num + 1 return limit_num ##选出打板的股票 def pick_high_limit(stocks,pre_date): df_panel = get_price(stocks, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money']) df_close = df_panel['close'] df_open = df_panel['open'] df_high_limit = df_panel['high_limit'] df_money = df_panel['money'] high_limit_stock = [] for stock in (stocks): _high_limit = (df_high_limit[stock].values) _close = (df_close[stock].values) _open = (df_open[stock].values) _money = (df_money[stock].values) if(stock[0:3] == '300'): continue if _high_limit == _close : high_limit_stock.append(stock) return high_limit_stock ##去除st的股票 def filter_st(codelist): current_data = get_current_data() codelist = [code for code in codelist if not current_data[code].is_st] return codelist ##过滤上市时间不满1080天的股票 def filter_stock_by_days(context, stock_list, days): tmpList = [] for stock in stock_list : days_public=(context.current_dt.date() - get_security_info(stock).start_date).days if days_public > days: tmpList.append(stock) return tmpList ## 收盘后运行函数 def after_market_close(context): log.info(str('函数运行时间(after_market_close):'+str(context.current_dt.time()))) #今天交易的股票有 print("-------今天交易的股票有--------") print("one="+str(g.help_stock)) print("one_sell="+str(g.help_stock_sell)) print("现在开始清空每日的复盘情况--------->>") g.help_stock = [] print("#one="+str(g.help_stock)) print("#one_sell="+str(g.help_stock_sell)) log.info('一天结束') log.info('##############################################################') ```
文章分类
关于作者
水滴
注册时间: