量化学习平台
文章
市场宽度
背离图
登录
注册
正黄旗大妈选股改进-加入涨停卖出后的买入,提高资金利用率
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/44743 # 标题:正黄旗大妈选股改进-加入涨停卖出后的买入,提高资金利用率 # 作者:jql123 # 原回测条件:2013-01-01 到 2023-11-02, ¥1000000, 每天 # 原文网址:https://www.joinquant.com/post/40004 # 标题:删 # 作者:开心果 # 原文网址:https://www.joinquant.com/post/40038 # 标题:正黄旗大妈选股法 # 作者:GoodThinker # 原文网址:https://www.joinquant.com/post/40004 # 标题:菜场大妈选股法 # 作者:开心果 import pandas as pd # 聚宽的panda版本是 0.23.4 from jqdata import * def initialize(context): # setting log.set_level('order', 'error') set_option('use_real_price', True) set_option('avoid_future_data', True) set_benchmark('000905.XSHG') # 设置滑点为理想情况,纯为了跑分好看,实际使用注释掉为好 # set_slippage(PriceRelatedSlippage(0.000)) # 设置交易成本 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # strategy g.stock_num = 10 g.choice = [] g.just_sold = [] run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_daily(check_limit_up, time='14:00') run_monthly(my_Trader, 1 ,time='9:30') run_monthly(go_Trader, 1 ,time='14:55') def my_Trader(context): #1 all stocks dt_last = context.previous_date stocks = get_all_securities('stock', dt_last).index.tolist() stocks = filter_kcbj_stock(stocks) #2 股息率 stocks = get_dividend_ratio_filter_list(context, stocks, False, 0, 0.25) #3 peg stocks = get_peg(context,stocks) #4 各种过滤 choice = filter_st_stock(stocks) choice = filter_paused_stock(choice) choice = filter_limitup_stock(context,choice) choice = filter_limitdown_stock(context,choice) #5 低价股 choice = filter_highprice_stock(context,choice) g.choice = choice[:g.stock_num] def go_Trader(context): g.just_sold = [] #每月清零一次 g.just_sold 防止其中内容一直膨胀 cdata = get_current_data() choice = g.choice # Sell for s in context.portfolio.positions: if (s not in choice) : log.info('Sell', s, cdata[s].name) order_target(s, 0) # 如果跌停怎么办? # buy position_count = len(context.portfolio.positions) if g.stock_num > position_count: psize = context.portfolio.available_cash/(g.stock_num - position_count) for s in choice: if s not in context.portfolio.positions: log.info('buy', s, cdata[s].name) order_value(s, psize) # 这里如果涨停怎么办? if len(context.portfolio.positions) == g.stock_num: break def cap(context): current_data = get_current_data() #获取日期 hold_stocks = context.portfolio.positions.keys() for s in hold_stocks: q = query(valuation).filter(valuation.code == s) df = get_fundamentals(q) # log.info(s,current_data[s].name,'流值',df['circulating_market_cap'][0],'亿') log.info(s,current_data[s].name,'市值',df['market_cap'][0],'亿') log.info(s,current_data[s].name,'股价',current_data[s].last_price,'元') def get_peg(context,stocks): # 获取基本面数据 q = query(valuation.code, valuation.pe_ratio / indicator.inc_net_profit_year_on_year,# PEG indicator.roe / valuation.pb_ratio, # PB-ROE 收益率指标:ROE/PB特别适合于周期类、成长性一般企业的估值分析 indicator.roe, ).filter( valuation.pe_ratio / indicator.inc_net_profit_year_on_year>-3, valuation.pe_ratio / indicator.inc_net_profit_year_on_year<3, # indicator.roe / valuation.pb_ratio > 3.2, #国债收益率 valuation.code.in_(stocks)) df_fundamentals = get_fundamentals(q, date = None) stocks = list(df_fundamentals.code) # fuandamental data df = get_fundamentals(query(valuation.code).filter(valuation.code.in_(stocks)).order_by(valuation.market_cap.asc())) choice = list(df.code) return choice #1-1 根据最近一年分红除以当前总市值计算股息率并筛选 def get_dividend_ratio_filter_list(context, stock_list, sort, p1, p2): time1 = context.previous_date time0 = time1 - datetime.timedelta(days=365) #获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合 interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000 list_len = len(stock_list) #截取不超过interval的列表并查询 q = query( finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)])) df = finance.run_query(q) #对interval的部分分别查询并拼接 if list_len > interval: df_num = list_len // interval for i in range(df_num): q = query( finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))])) temp_df = finance.run_query(q) df = df.append(temp_df) dividend = df.fillna(0) dividend = dividend.set_index('code') dividend = dividend.groupby('code').sum() temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list #获取市值相关数据 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list)) cap = get_fundamentals(q, date=time1) cap = cap.set_index('code') #计算股息率 DR = pd.concat([dividend, cap] ,axis=1, sort=False) DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap'] #排序并筛选 DR = DR.sort_values(by=['dividend_ratio'], ascending=sort) final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))] return final_list # 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.high_limit_list = [] hold_list = list(context.portfolio.positions) if hold_list: df = get_price(hold_list, end_date=context.previous_date, frequency='daily', fields=['close', 'high_limit'], count=1, panel=False) g.high_limit_list = df[df['close'] == df['high_limit']]['code'].tolist() # 调整昨日涨停股票 def check_limit_up(context): # 检查持仓,如果有卖出就再买入 position_count = len(context.portfolio.positions) if g.stock_num > position_count and position_count != 0: # position_count != 0 用于避免第一次运行时代替go_trader 买入 my_Trader(context) # 计算 g.choice cdata = get_current_data() psize = context.portfolio.available_cash/(g.stock_num - position_count) for s in g.choice: if s not in context.portfolio.positions and s not in g.just_sold: order_value(s, psize) if len(context.portfolio.positions) == g.stock_num: break # 获取持仓的昨日涨停列表 current_data = get_current_data() if g.high_limit_list: for stock in g.high_limit_list: if current_data[stock].last_price < current_data[stock].high_limit: order_target(stock, 0) g.just_sold.append(stock) # 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list # 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] # 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] # 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] # 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-4 过滤股价高于9元的股票 def filter_highprice_stock(context,stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < 9] # end ```
文章分类
关于作者
水滴
注册时间: