量化学习平台
文章
市场宽度
背离图
登录
注册
国九条-新的红利因子,修正「审计意见」函数
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/48747 # 标题:国九条-新的红利因子,修正「审计意见」函数 # 作者:LGQ_2023 # 原回测条件:2019-01-01 到 2024-06-10, ¥100000, 每天 # 原文网址:https://www.joinquant.com/post/47929 # 标题:国九条-新的红利因子,年化103.49% 回撤24.28% # 作者:热情的刀 # 20240426 改进了红利的相关参数 # 20240429 引入了红利的超额收益因子 # 年化 103% 回撤 24% # 作者: 热情的刀 # 原文网址:https://www.joinquant.com/post/47791 # 标题:国九小市值策略【年化100.5%|回撤25.6%】 # 作者:zycash #enable_profile() #本策略为www.joinquant.com/post/47346的改进版本 #根据国九条,筛选股票 #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd from datetime import time from jqdata import finance #import datetime #初始化函数 def initialize(context): # 开启防未来函数 set_option('avoid_future_data', True) # 成交量设置 #set_option('order_volume_ratio', 0.10) # 设定基准 set_benchmark('399101.XSHE') # 用真实价格交易 set_option('use_real_price', True) # 将滑点设置为0 set_slippage(FixedSlippage(3/10000)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=2.5/10000, close_commission=2.5/10000, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') log.set_level('system', 'error') log.set_level('strategy', 'debug') #初始化全局变量 bool g.trading_signal = True # 是否为可交易日 g.run_stoploss = True # 是否进行止损 g.filter_audit = True # 是否筛选审计意见 g.filter_bonus= True #是否筛选红利 g.adjust_num = True # 是否调整持仓数量 #全局变量list g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.target_list = [] g.pass_months = [1,4] # 空仓的月份 g.limitup_stocks = [] # 记录涨停的股票避免再次买入 g.Expected_bonus= [5] #设定引入超额收益的因子的月份 #全局变量float/str g.min_mv =10 # 股票最小市值要求 g.max_mv = 1e8 # 股票最大市值要求 g.stock_num = 4 # 设定初始股票池的基数,经过基本面初步筛选前的股票池内的股票数量为g.stock_num*g.stock_pool_mult g.stock_pool_mult= 5 #原始股票池的倍率 g.reason_to_sell = '' g.stoploss_strategy = 3 # 1为止损线止损,2为市场趋势止损, 3为联合1、2策略 g.stoploss_limit = 0.09 # 止损线 g.stoploss_market = 0.05 # 市场趋势止损参数 g.highest =50 #股票单价上限设置 g.bonus_year= 1 # 控制有现金分红的年限 g.etf = '511880.XSHG' # 空仓月份持有银华日利ETF # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_daily(trade_afternoon, time='14:00', reference_security='399101.XSHE') #检查持仓中的涨停股是否需要卖出 run_daily(sell_stocks, time='10:00') # 止损函数 run_daily(close_account, '14:50') run_weekly(weekly_adjustment,2,'10:00') #run_weekly(print_position_info, 5, time='15:10', reference_security='000300.XSHG') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] g.limitup_stocks = [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit','low_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #判断今天是否为账户资金再平衡的日期 g.trading_signal = today_is_between(context) #1-2 选股模块 def get_stock_list(context): final_list = [] MKT_index = '399101.XSHE' initial_list = filter_stocks(context, get_index_stocks(MKT_index)) # 国九更新:过滤近一年净利润为负且营业收入小于1亿的 # 国九更新:过滤近一年期末净资产为负的 (经查询没有为负数的,所以直接pass这条) # 国九更新:过滤近一年审计建议无法出具或者为负面建议的 (经过净利润等筛选,审计意见几乎不会存在异常) q = query( valuation.code, valuation.market_cap, # 总市值 circulating_market_cap/market_cap income.np_parent_company_owners, # 归属于母公司所有者的净利润 income.net_profit, # 净利润 income.operating_revenue # 营业收入 #security_indicator.net_assets ).filter( valuation.code.in_(initial_list), valuation.market_cap.between(g.min_mv,g.max_mv), income.np_parent_company_owners > 0, income.net_profit > 0, income.operating_revenue > 1e8, indicator.roe>0, indicator.roa>0, ).order_by(valuation.market_cap.asc()).limit(g.stock_num*g.stock_pool_mult) df = get_fundamentals(q) final_list = list(df.code) # 过滤审计意见 if g.filter_audit: final_list = filter_audit(context,final_list) #过滤红利股 if g.filter_bonus: final_list = bonus_filter(context,final_list) if len(final_list) == 0: # 由于有时候选股条件苛刻,所以会没有股票入选,这时买入银华日利ETF log.info('无适合股票,买入ETF') return [g.etf] else: last_prices = history(1, unit='1d', field='close', security_list=final_list) return [stock for stock in final_list if stock in g.hold_list or last_prices[stock][-1] <= g.highest] #1-3 整体调整持仓 def weekly_adjustment(context): if g.trading_signal and g.adjust_num: new_num = adjust_stock_num(context) if new_num == 0: buy_security(context, [g.etf]) log.info('MA指示指数大跌,持有银华日利ETF') else: if g.stock_num != new_num: g.stock_num = new_num log.info(f'持仓数量修改为{new_num}') g.target_list = get_stock_list(context)[:g.stock_num] log.info(str(g.target_list)) sell_list = [stock for stock in g.hold_list if stock not in g.target_list and stock not in g.yesterday_HL_list] hold_list = [stock for stock in g.hold_list if stock in g.target_list or stock in g.yesterday_HL_list] log.info("已持有[%s]" % (str(hold_list))) log.info("卖出[%s]" % (str(sell_list))) sell_positions = [context.portfolio.positions[stock] for stock in sell_list] for position in sell_positions: close_position(position) buy_security(context, g.target_list) for position in list(context.portfolio.positions.values()): stock = position.security else: buy_security(context, [g.etf]) log.info('该月份为空仓月份,持有银华日利ETF') #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) g.reason_to_sell = 'limitup' g.limitup_stocks.append(stock) else: log.info("[%s]涨停,继续持有" % (stock)) #1-5 如果昨天有股票卖出或者买入失败,剩余的金额今天早上买入 def check_remain_amount(context): if g.reason_to_sell is 'limitup': #判断提前售出原因,如果是涨停售出则次日再次交易,如果是止损售出则不交易 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) if len(g.hold_list) < g.stock_num: # 计算需要买入的股票数量 num_stocks_to_buy = min(len(g.limitup_stocks), g.stock_num - len(context.portfolio.positions)) target_list = [stock for stock in g.target_list if stock not in g.limitup_stocks][:num_stocks_to_buy] log.info('有余额可用'+str(round((context.portfolio.cash),2))+'元。买入'+ str(target_list)) buy_security(context,target_list) g.reason_to_sell = '' elif g.reason_to_sell is 'stoploss': log.info('有余额可用'+str(round((context.portfolio.cash),2))+'元。买入'+ str(g.etf)) buy_security(context,[g.etf]) g.reason_to_sell = '' #1-6 下午检查交易 def trade_afternoon(context): if g.trading_signal == True: check_limit_up(context) check_remain_amount(context) #1-7 止盈止损 def sell_stocks(context): if g.run_stoploss: current_positions = context.portfolio.positions if g.stoploss_strategy == 1 or g.stoploss_strategy == 3: for stock in current_positions.keys(): price = current_positions[stock].price avg_cost = current_positions[stock].avg_cost # 个股盈利止盈 if price >= avg_cost * 2: order_target_value(stock, 0) log.debug("收益100%止盈,卖出{}".format(stock)) # 个股止损 elif price < avg_cost * (1 - g.stoploss_limit): order_target_value(stock, 0) log.debug("收益止损,卖出{}".format(stock)) g.reason_to_sell = 'stoploss' if g.stoploss_strategy == 2 or g.stoploss_strategy == 3: stock_df = get_price(security=get_index_stocks('399101.XSHE'), end_date=context.previous_date, frequency='daily', fields=['close', 'open'], count=1, panel=False) down_ratio = abs((stock_df['close'] / stock_df['open'] - 1).mean()) # 市场大跌止损 if down_ratio >= g.stoploss_market: g.reason_to_sell = 'stoploss' log.debug("大盘惨跌,平均降幅{:.2%}".format(down_ratio)) for stock in current_positions.keys(): order_target_value(stock, 0) #1-8 动态调仓代码 def adjust_stock_num(context): ma_para = 10 # 设置MA参数 today = context.previous_date start_date = today - datetime.timedelta(days = ma_para*2) index_df = get_price('399101.XSHE', start_date=start_date, end_date=today, frequency='daily') index_df['ma'] = index_df['close'].rolling(window=ma_para).mean() last_row = index_df.iloc[-1] diff = last_row['close'] - last_row['ma'] # 根据差值结果返回数字 result = 3 if diff >= 500 else \ 3 if 200 <= diff < 500 else \ 4 if -200 <= diff < 200 else \ 5 if -500 <= diff < -200 else \ 6 return result #2 过滤各种股票 def filter_stocks(context, stock_list): current_data = get_current_data() # 涨跌停和最近价格的判断 last_prices = history(1, unit='1m', field='close', security_list=stock_list) # 过滤标准 filtered_stocks = [] for stock in stock_list: if current_data[stock].paused: # 停牌 continue if current_data[stock].is_st: # ST continue if '退' in current_data[stock].name: # 退市 continue if stock.startswith('30') or stock.startswith('68') or stock.startswith('8') or stock.startswith('4'): # 市场类型 continue if not (stock in context.portfolio.positions or last_prices[stock][-1] < current_data[stock].high_limit): # 涨停 continue if not (stock in context.portfolio.positions or last_prices[stock][-1] > current_data[stock].low_limit): # 跌停 continue # 次新股过滤 start_date = get_security_info(stock).start_date if context.previous_date - start_date < timedelta(days=375): continue filtered_stocks.append(stock) return filtered_stocks #2.1 筛选审计意见 ''' 审计意见类型编码 类型编码 审计意见类型 1 无保留 2 无保留带解释性说明 3 保留意见 4 拒绝/无法表示意见 5 否定意见 6 未经审计 7 保留带解释性说明 10 经审计(不确定具体意见类型) 11 无保留带持续经营重大不确定性 ''' def filter_audit(context,code_list): # 获取审计意见,近三年内如果有不合格(report_type为3、4、5、7)的审计意见则返回False,否则返回True final_list = [] expection_Audit_list = [] for stock in code_list: lstd = context.previous_date last_year = (lstd.replace(year=lstd.year - 3, month=1, day=1)).strftime('%Y-%m-%d') q=query(finance.STK_AUDIT_OPINION.code,finance.STK_AUDIT_OPINION.pub_date,finance.STK_AUDIT_OPINION).filter( finance.STK_AUDIT_OPINION.code==stock, finance.STK_AUDIT_OPINION.pub_date>=last_year, finance.STK_AUDIT_OPINION.pub_date<=context.current_dt, ) df=finance.run_query(q) # print('\n%s'%df) values_to_check = [3, 4, 5, 7] contains_unwanted_values = df['opinion_type_id'].isin(values_to_check).any() if not contains_unwanted_values: final_list.append(stock) else: expection_Audit_list.append(stock) print('★★★★ 去除近三年内存在审计问题的%s只 ★★★★'%(len(expection_Audit_list))) print('★★★★ 存在审计问题的: %s '%(expection_Audit_list)) return final_list # 返回剔除审计意见异常后的list #2.2 #获取红利列表 def bonus_filter(context,stock_list): #print(f'进入红利筛选前,共{len(stock_list)}只股票') year=context.previous_date.year start_date=datetime.date(year, 1, 1) end_date=context.previous_date if end_date.month in g.Expected_bonus: q = query(finance.STK_XR_XD.code,finance.STK_XR_XD.company_name, finance.STK_XR_XD.board_plan_pub_date,finance.STK_XR_XD.bonus_amount_rmb,finance.STK_XR_XD.bonus_ratio_rmb ).filter( #finance.STK_XR_XD.bonus_type !='年度分红', finance.STK_XR_XD.board_plan_pub_date>start_date, finance.STK_XR_XD.implementation_pub_date<=end_date, #finance.STK_XR_XD.a_xr_date < context.previous_date, finance.STK_XR_XD.bonus_ratio_rmb>0, finance.STK_XR_XD.code.in_(stock_list)) Expected_bonus_df = finance.run_query(q) if len(Expected_bonus_df)>0: bonus_list=Expected_bonus_df['code'].unique().tolist() price_df=history(1, unit='1d', field='close', security_list=bonus_list, df=True, skip_paused=False, fq='pre') price_df=price_df.T price_df.rename(columns={price_df.columns[0]:'Close_now'},inplace=True) price_df['code']=price_df.index Expected_bonus_df=pd.merge(Expected_bonus_df,price_df,on=('code'),how='left') Expected_bonus_df['bonus_ratio']=(Expected_bonus_df['bonus_ratio_rmb'])/Expected_bonus_df['Close_now'] Expected_bonus_df=Expected_bonus_df.sort_values(by='bonus_ratio',ascending=True) bonus_list=Expected_bonus_df['code'].unique().tolist() else: bonus_list=[] else: reprot_date = datetime.date(year-1, 12, 31) q = query(finance.STK_XR_XD.code,finance.STK_XR_XD.company_name,finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb,finance.STK_XR_XD.bonus_ratio_rmb ).filter( finance.STK_XR_XD.report_date ==reprot_date, finance.STK_XR_XD.bonus_type=='年度分红' , finance.STK_XR_XD.implementation_pub_date<=end_date, finance.STK_XR_XD.board_plan_bonusnote=='不分配不转增', finance.STK_XR_XD.code.in_(stock_list)) no_year_bonus = finance.run_query(q) no_year_bonus_list=no_year_bonus['code'].unique().tolist() #排除今年不分红的股票 bonus_list=[code for code in stock_list if code not in no_year_bonus_list] bonus_list=short_by_market_cap(context,bonus_list) print(f'进行实际红利筛选后,原有{len(stock_list)}只股票,筛选后剩余{len(bonus_list)}只股票') if len(bonus_list)< g.stock_num: bonus_list.extend([x for x in short_by_market_cap(context,stock_list) if x not in bonus_list ][:g.stock_num-len(bonus_list)]) return bonus_list #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: pass #log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #3-4 买入模块 def buy_security(context,target_list): #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: #if stock not in context.portfolio.positions: if open_position(stock, value): log.info("买入[%s](%s元)" % (stock,value)) if len(context.portfolio.positions) == target_num: break #4-1 判断今天是否跳过月份 def today_is_between(context): # 根据g.pass_month跳过指定月份 today = context.current_dt month = today.month if month in g.pass_months: return False else: return True #4-2 清仓后次日资金可转 def close_account(context): if g.trading_signal == False: if len(g.hold_list) != 0 and g.hold_list != [g.etf]: for stock in g.hold_list: position = context.portfolio.positions[stock] close_position(position) log.info("卖出[%s]" % (stock)) #5 公共模块 #5-1 根据市值排序 def short_by_market_cap(context,stock_list): short_q = query( valuation.code, valuation.market_cap, # 总市值 circulating_market_cap/market_cap ).filter( valuation.code.in_(stock_list), valuation.day == context.previous_date, ).order_by(valuation.market_cap.asc()) short_df=get_fundamentals(short_q) short_list=short_df['code'].unique().tolist() return short_list def print_position_info(context): for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: