量化学习平台
文章
市场宽度
背离图
登录
注册
研报三因子II-新规高分红小市值-年化60回撤19
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47618 # 标题:研报三因子II-新规高分红小市值-年化60回撤19 # 作者:xiaohui1108 # 原回测条件:2019-01-01 到 2024-01-01, ¥150000, 每天 #导入函数库 from jqdata import * from jqfactor import * import pandas as pd #初始化函数 def initialize(context): # 设定基准 set_benchmark('399303.XSHE') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #初始化全局变量 g.stock_num = 10 # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_weekly(weekly_adjustment, 1, '09:30') run_daily(check_limit_up, '14:30') run_daily(close_account, '14:30') #1-1 准备股票池 def prepare_stock_list(context): # 获取已持有列表 g.hold_list = list(context.portfolio.positions) # 获取持仓中涨停列表 g.high_limit_list = [] if g.hold_list: g.high_limit_list = get_price(g.hold_list, end_date=context.previous_date, count=1,fields=['close', 'high_limit', 'paused'], panel=False ).query('close==high_limit')['code'].tolist() # 判断今天是否为账户资金再平衡的日期 g.no_trading_today_signal = today_is_between(context, '04-08', '04-30') #1-1 选股模块 def get_factor_filter_list(context,stock_list,jqfactor,sort,p1,p2): yesterday = context.previous_date score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist() df = pd.DataFrame(columns=['code','score']) df['code'] = stock_list df['score'] = score_list df = df.dropna() df.sort_values(by='score', ascending=sort, inplace=True) filter_list = list(df.code)[int(p1*len(stock_list)):int(p2*len(stock_list))] return filter_list #1-2 选股模块 def get_stock_list(context): yesterday = str(context.previous_date) initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context, initial_list, 375) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) #高分红 de_list = get_dividend_ratio_filter_list(context, initial_list, False, 0, 0.1) q = query(valuation.code).filter(valuation.code.in_(de_list),indicator.eps > 0).order_by(valuation.market_cap.asc()) df = get_fundamentals(q, date=yesterday) de_list = list(df.code) #高pe q = query(valuation.code).filter(valuation.code.in_(initial_list),indicator.eps > 0,).order_by(valuation.pe_ratio.desc()) df = get_fundamentals(q, date=yesterday) ml_list = list(df.code)[:int(len(initial_list)*0.1)] q = query(valuation.code).filter(valuation.code.in_(ml_list)).order_by(valuation.market_cap.asc()) df = get_fundamentals(q, date=yesterday) ml_list = list(df.code) #高增长率 sg_list = get_factor_filter_list(context, initial_list, 'sales_growth', False, 0, 0.1) q = query(valuation.code).filter(valuation.code.in_(sg_list),indicator.eps > 0,).order_by(valuation.market_cap.asc()) df = get_fundamentals(q, date=yesterday) sg_list = list(df.code) final_list = [de_list, ml_list, sg_list] return final_list #1-5 整体调整持仓 def weekly_adjustment(context): if g.no_trading_today_signal: print("四月空仓") return #获取应买入列表 all_list = get_stock_list(context) de_list = all_list[0][:int(g.stock_num*0.6)] ml_list = all_list[1][:int(g.stock_num*0.6)] ne_list = all_list[2][:int(g.stock_num*0.6)] union_list = list(set(de_list).union(set(ml_list)).union(set(ne_list))) df = get_fundamentals(query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(union_list)).order_by(valuation.market_cap.asc())) target_list = list(df.code) target_list = filter_paused_stock(target_list) target_list = filter_limitup_stock(context, target_list) target_list = filter_limitdown_stock(context, target_list) #截取不超过最大持仓数的股票量 target_list = target_list[:min(g.stock_num, len(target_list))] #调仓卖出 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.high_limit_list): log.info("卖出[%s]" % (stock)) order_target_value(stock, 0) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: order_target_value(stock, value) log.info("买入[%s]" % (stock)) if len(context.portfolio.positions) == target_num: break #1-6 调整昨日涨停股票 def check_limit_up(context): current_data = get_current_data() if g.high_limit_list: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.high_limit_list: if current_data[stock].last_price < current_data[stock].high_limit: log.info("涨停打开,卖出:{}".format((stock))) order_target_value(stock, 0) else: log.info("涨停,继续持有:{}".format((stock))) print('—'*50) def get_dividend_ratio_filter_list(context, stock_list, sort, p1, p2): time1 = context.previous_date time0 = time1 - datetime.timedelta(days=365) #获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合 interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000 list_len = len(stock_list) #截取不超过interval的列表并查询 q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)])) df = finance.run_query(q) #对interval的部分分别查询并拼接 if list_len > interval: df_num = list_len // interval for i in range(df_num): q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))])) temp_df = finance.run_query(q) df = df.append(temp_df) dividend = df.fillna(0) #dividend = dividend.set_index('code') #print(dividend) dividend = dividend.groupby('code').sum() #print(dividend) temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list #获取市值相关数据 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list)) cap = get_fundamentals(q, date=time1) cap = cap.set_index('code') #计算股息率 DR = pd.concat([dividend, cap] ,axis=1) DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap'] #排序并筛选 DR = DR.sort_values(by='dividend_ratio', ascending=sort) final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))] return final_list #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-7 过滤次新股 def filter_new_stock(context, stock_list, d): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=d)] #4-1 判断今天是否为账户资金再平衡的日期 def today_is_between(context, start_date, end_date): today = context.current_dt.strftime('%m-%d') if (start_date <= today) and (today <= end_date): return True else: return False #4-2 清仓后次日资金可转 def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: order_target_value(stock, 0) log.info("卖出[%s]" % (stock)) # end ```
文章分类
关于作者
水滴
注册时间: