量化学习平台
文章
市场宽度
背离图
登录
注册
(乱改一版)股票加“钱粮”ETF组合
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/46218 # 标题:(乱改一版)股票加“钱粮”ETF组合 # 作者:美吉姆优秀毕业代表 # 原回测条件:2017-01-01 到 2024-02-01, ¥1000000, 每天 # 原文网址:https://www.joinquant.com/post/46015 # 标题:“低风险,小市值+ETF轮动策略”修改版,略有改善 # 作者:请叫我大大白 # 原文网址:https://www.joinquant.com/post/45931 # 标题:低风险,小市值+ETF轮动策略 # 作者:无逻辑的光 from jqdata import * from jqfactor import get_factor_values import numpy as np import pandas as pd from scipy.optimize import minimize def initialize(context): # 设定基准 set_benchmark('000906.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0.002)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('system', 'error') #初始化全局变量 g.stock_num = 10 g.etf = [] g.commodity_etf = [ '162411.XSHE', #华宝油气 '518880.XSHG', #黄金ETF # '511010.XSHG', #国债ETF '159985.XSHE', #豆粕ETF ] g.qdii_etf = [] g.no_trading_today_signal = False g.limit_up_list = [] g.hold_list = [] g.stock_rate = 0.4 #中国股票股票仓位 g.qdii_rate = 0.3 #外国股票组合仓位 g.risk_management = -0.0382 # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_monthly(Trader_stocks,1, '9:35') # run_weekly(Trader_stocks,1, '9:35') run_monthly(Trader_etf,1,time='14:55') # run_weekly(Trader_etf,1,time='14:55') run_daily(rec,time='15:01') run_daily(check_limit_up, '14:00') #检查持仓中的涨停股是否需要卖出 run_daily(close_account, '14:30') #run_daily(print_position_info, '15:10') run_daily(risk_management, '13:00') #run_daily(print_position_info, '15:10') # 盘中浮亏止损 def risk_management(context): # 获取前n个单位时间当时的收盘价 def get_close_price(code, n, unit='1d'): return attribute_history(code, n, unit, 'close', df=False)['close'][0] for stock in context.portfolio.positions.keys(): # 计算个股即时的浮动盈亏 fuying = context.portfolio.positions[stock].price/ context.portfolio.positions[stock].avg_cost-1 current_data = get_current_data() price1d = get_close_price(stock, 1) nosell_1 = context.portfolio.positions[stock].price >= current_data[stock].high_limit # 浮动亏6.5个百分点卖出 if fuying < g.risk_management and not nosell_1: position = context.portfolio.positions[stock] # close_position(context,stock) close_position(position) print('盘中止损%s'%current_data[stock].name) def Trader_etf(context): #today = context.current_dt #if today.month in [1,4,7,10]: total_value = context.portfolio.total_value #stock_Trader(context,total_value*0.1) commodity_etf_trade(context,total_value*(1-g.stock_rate-g.qdii_rate)) qdii_etf_trade(context,total_value*(g.qdii_rate)) def commodity_etf_trade(context,total_value): print('商品etf可用资金 %s'%int(total_value)) # 计算商品etf权重 end_date = context.previous_date if end_date.year < 2020: g.commodity_etf = [ '162411.XSHE', #华宝油气 '518880.XSHG', #黄金ETF '511010.XSHG', #国债ETF # '159985.XSHE', #豆粕ETF ] else: g.commodity_etf = [ '162411.XSHE', #华宝油气 '518880.XSHG', #黄金ETF # '511010.XSHG', #国债ETF '159985.XSHE', #豆粕ETF ] weights = run_optimization(g.commodity_etf, end_date) # print("commodity_etf weights",weights) record(commodity_etf = len(g.commodity_etf)) if weights is None: return index = 0 for w in weights: value = total_value * w # 确定每个标的的权重 order_target_value(g.commodity_etf[index], value) # 调整标的至目标权重 print(g.commodity_etf[index], value) index+=1 def qdii_etf_trade(context,total_value): end_date = context.previous_date print('qdii_etf可用资金 %s'%int(total_value)) # 计算qdii etf权重 g.qdii_etf = filter_DQII_etf(context) g.qdii_etf = g.qdii_etf[:10] record(qdii_etf = len(g.qdii_etf)) print('qdii_etf 有 %s 个'%len(g.qdii_etf)) weights = run_optimization(g.qdii_etf, end_date) # print("qdii_etf weights",weights) if weights is None: return index = 0 for w in weights: value = total_value * w # 确定每个标的的权重 order_target_value(g.qdii_etf[index], value) # 调整标的至目标权重 print(g.qdii_etf[index], value) index+=1 #1-4 整体调整持仓 def Trader_stocks(context): if g.no_trading_today_signal == False: #获取应买入列表 today = context.current_dt if today.month in [1,4]:#,7,10 target_list_small_cap = [] else: target_list_small_cap = get_stock_list(context) #选小市值股 target_list_small_cap = target_list_small_cap[0:g.stock_num] target_list_Dividend_stock = choice_try_A(context) #选红利股 target_list_Dividend_stock = target_list_Dividend_stock[0:g.stock_num] target_list = list(set(target_list_small_cap + target_list_Dividend_stock)) #10或20 print('选出股票 %s 只'%len(target_list)) record(股票数 = len(target_list)) #调仓卖出 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.high_limit_list) and (stock not in g.etf): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 # position_count = len(context.portfolio.positions) #持股数 # target_num = len(target_list) #待买列表 # if target_num > (position_count-len(g.qdii_etf)-len(g.commodity_etf)): # #value = context.portfolio.cash / (target_num - position_count+len(g.etf)) # value = min(context.portfolio.cash,context.portfolio.total_value*g.stock_rate) / (target_num - position_count + len(g.qdii_etf) + len(g.commodity_etf)) # for stock in target_list: # if context.portfolio.positions[stock].total_amount == 0: # if open_position(stock, value): # if len(context.portfolio.positions) == target_num + len(g.qdii_etf) + len(g.commodity_etf): # break g.etf = set(g.qdii_etf + g.commodity_etf) #调仓买入 # position_count = len(context.portfolio.positions) # target_num = len(target_list) # if target_num > (position_count-len(g.etf)): # #value = context.portfolio.cash / (target_num - position_count+len(g.etf)) # value = min(context.portfolio.cash,context.portfolio.total_value*g.stock_rate) / (target_num - position_count+len(g.etf)) # for stock in target_list: # if context.portfolio.positions[stock].total_amount == 0: # if value > 1000: # if open_position(stock, value): # if len(context.portfolio.positions) == target_num+len(g.etf): # break # 获取当前投资组合中的仓位数量 position_count = len(context.portfolio.positions) hold_stock_num = position_count-len(g.etf) free_stock_position = position_count-hold_stock_num # 获取目标列表中的股票数量 target_num = len(target_list) # 检查目标列表中的股票数量是否大于当前的仓位数量减去ETF的数量 if target_num > hold_stock_num: # 计算每只股票的投资金额,金额为现金和总价值乘以一定系数的较小值,除以需要买入的股票数量 value = min(context.portfolio.cash,context.portfolio.total_value*g.stock_rate) / free_stock_position #20-19+10 # 遍历目标列表中的每一支股票 for stock in target_list: # 检查当前投资组合是否没有持有该股票 if context.portfolio.positions[stock].total_amount == 0: # 检查预计投资金额是否超过了1000元 if value > 1000: # 如果上述条件都满足,尝试开仓 if open_position(stock, value): # 检查当前组合仓位数是否达到了目标数量(包括ETF数量),如果达到则停止买入 if len(context.portfolio.positions) == target_num+len(g.etf): break else: break def filter_DQII_etf(context): lofs = get_all_securities(['etf']) lofs = lofs[lofs['start_date'] < context.previous_date] lofs = lofs[lofs['end_date'] > context.current_dt.date()] lofs = lofs.index.tolist() current_data = get_current_data() #获取日期 lofs = [stock for stock in lofs if ( '德' in current_data[stock].name or '纳' in current_data[stock].name or '法' in current_data[stock].name or 'DAX' in current_data[stock].name or '标' in current_data[stock].name or '英' in current_data[stock].name or '日' in current_data[stock].name or '印' in current_data[stock].name or '越' in current_data[stock].name or '225' in current_data[stock].name ) and '中' not in current_data[stock].name and '企' not in current_data[stock].name ] # 基金净值 net_value=get_extras('unit_net_value', lofs, end_date=context.previous_date, df=True, count=1).T net_value.columns=['unit_net_value'] # 基金价格 close=history(count=1, unit='1d', field="close", security_list=lofs).T volume=history(count=1, unit='1d', field="volume", security_list=lofs).T # print(volume) volume = volume[volume>1000000] #日成交额大于100万 close = close[close.index.isin(volume.index)] close.columns=['close'] # score = 价格/净值 val=net_value.join(close) val['score'] = val['close'] / val['unit_net_value'] # 过滤 val = val[(val['score'] > 0)] val = val[(val['score'] < 1.1)] #溢价太多不要 # 排序 val = val.sort_values(by='score', ascending = False) #溢价越多越买,气死你 buy_list = val.index.tolist() return buy_list # 计算投资组合方差的函数 def portfolio_variance(weights, cov_matrix): # 定义投资组合方差函数 return np.dot(weights.T, np.dot(cov_matrix* 250, weights)) # 计算并返回投资组合方差 # 优化投资组合的函数 def optimize_portfolio(returns): # 定义优化投资组合函数 # 计算协方差矩阵 cov_matrix = returns.cov() # 计算收益的协方差矩阵 # 投资组合中的资产数量 num_assets = len(returns.columns) # 计算投资组合中的资产数量 w_min = 1/(np.power(num_assets,2)) w_max = 0.9 # 初始权重(平均分配) init_weights = np.array([1/num_assets] * num_assets) # 设置初始权重 # 约束条件 weight_sum_constraint = {'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1} # 权重和约束 #bounds = [(0, 1) for _ in range(num_assets)] # 权重范围约束 bnds = tuple((w_min,w_max) for x in range(num_assets)) # 优化 result = minimize(portfolio_variance, init_weights,method='SLSQP', args=(cov_matrix), bounds=bnds, constraints=weight_sum_constraint) return result.x # 返回优化结果 # 定义获取数据并调用优化函数的函数 def run_optimization(stocks, end_date): prices = get_price(stocks, count=250, end_date=end_date, frequency='daily', fields=['close'])['close'] returns = prices.pct_change().dropna() # 计算收益率 weights = optimize_portfolio(returns) return weights #1-1 选股模块 def get_factor_filter_list(context,stock_list,jqfactor,sort,p1,p2): yesterday = context.previous_date score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist() df = pd.DataFrame(columns=['code','score']) df['code'] = stock_list df['score'] = score_list df = df.dropna() df.sort_values(by='score', ascending=sort, inplace=True) filter_list = list(df.code)[int(p1*len(df)):int(p2*len(df))] return filter_list #1-2 选股模块 def get_stock_list(context): yesterday = context.previous_date initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) initial_list = filter_paused_stock(initial_list) initial_list = filter_limitup_stock(context, initial_list) initial_list = filter_limitdown_stock(context, initial_list) #用两种方法获取的昨日收盘价回测效果相差不大 #用因子获得昨日收盘价 # price_list1 = get_factor_filter_list(context, initial_list, 'size', True, 0, 0.1) price_list1 = get_factor_filter_list(context, initial_list, 'price_no_fq', True, 0, 0.1) #用get_price获得昨日收盘价 df = get_price(initial_list, start_date=yesterday, end_date=yesterday, fields=['close'], fq='pre', panel=False) df = df.sort_values(by='close', ascending=True) price_list2 = list(df.code)[int(0*len(df)):int(0.1*len(df))] #流通市值轮动(这里选择了用因子获取的价格) q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(price_list1)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) df = df[df['eps']>0] final_list = list(df.code)[:15] return final_list #1-3 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.high_limit_list = list(df.code) else: g.high_limit_list = [] def choice_try_A(context,): yesterday = context.previous_date stocks = get_all_securities().index.tolist() stocks = filter_new_stock(context, stocks) stocks = filter_kcbj_stock(stocks) stocks = filter_st_stock(stocks) stocks = filter_paused_stock(stocks) stocks = filter_limitup_stock(context, stocks) stocks = filter_limitdown_stock(context, stocks) stocks = get_dividend_ratio_filter_list(context, stocks, False, 0, 0.10) #股息率排序 # 获取基本面数据 df = get_fundamentals(query( valuation.code, valuation.circulating_market_cap, ).filter( valuation.code.in_(stocks), valuation.pe_ratio.between(0,25),#市盈率 indicator.inc_return >3,#净资产收益率(扣除非经常损益)(%) indicator.inc_total_revenue_year_on_year>5,#营业总收入同比增长率(%) indicator.inc_net_profit_year_on_year>11,#净利润同比增长率。 valuation.pe_ratio / indicator.inc_net_profit_year_on_year>0.08,#净利润同比增长率 valuation.pe_ratio / indicator.inc_net_profit_year_on_year<1.9, )) stocks = list(df.code) # print("分红比率筛选后的股票有:{}".format(len(stocks))) return stocks #1-5 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.high_limit_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.high_limit_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-4 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-5 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-2 清仓后次日资金可转 def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: if stock not in g.etf: position = context.portfolio.positions[stock] close_position(position) log.info("卖出[%s]" % (stock)) #1-1 根据最近一年分红除以当前总市值计算股息率并筛选 def get_dividend_ratio_filter_list(context, stock_list, sort, p1, p2): time1 = context.previous_date time0 = time1 - datetime.timedelta(days=365) #获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合 interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000 list_len = len(stock_list) #截取不超过interval的列表并查询 q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)])) df = finance.run_query(q) #对interval的部分分别查询并拼接 if list_len > interval: df_num = list_len // interval for i in range(df_num): q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))])) temp_df = finance.run_query(q) df = df.append(temp_df) dividend = df.fillna(0) dividend = dividend.set_index('code') dividend = dividend.groupby('code').sum() temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list #获取市值相关数据 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list)) cap = get_fundamentals(q, date=time1) cap = cap.set_index('code') #计算股息率 DR = pd.concat([dividend, cap] ,axis=1, sort=False) DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap'] #排序并筛选 DR = DR.sort_values(by=['dividend_ratio'], ascending=sort) final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))] return final_list #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] def rec(context): _cent = context.portfolio.positions_value / context.portfolio.total_value _cent = int(_cent*10000)/10000 formatted_cent = "{:.2%}".format(_cent) # 格式化为百分比形式,保留两位小数 log.info('当前仓位 %s' % formatted_cent) record(当前仓位=_cent*10) stock_list = context.portfolio.positions.keys() record(总持股数=len(stock_list)) #4-1 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: