量化学习平台
文章
市场宽度
背离图
登录
注册
PEG+成长+小市值+RSRS择时
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/38233 # 标题:PEG+成长+小市值+RSRS择时 # 作者:量化菜鸟鸟 # 回测设置资金为 200000 #导入函数库 from jqdata import * from jqfactor import get_factor_values import numpy as np import pandas as pd import time,datetime #初始化函数 def initialize(context): set_benchmark('399300.XSHE') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #选股参数 g.stock_num = 4 #持仓数 # 设置交易时间,每天运行 g.ref_stock = '000300.XSHG' #用ref_stock做择时计算的基础数据 g.N = 18 # 计算最新斜率slope,拟合度r2参考最近N天 g.M = 600 # 计算最新标准分zscore,rsrs_score参考最近M天 g.score_threshold = 0.7 # rsrs标准分指标阈值 g.mean_day = 30 #计算结束ma收盘价,参考最近mean_day g.mean_diff_day = 2 #计算初始ma收盘价,参考(mean_day + mean_diff_day)天前,窗口为mean_diff_day的一段时间 g.slope_series = initial_slope_series()[:-1] # 除去回测第一天的slope,避免运行时重复加入 #原版是每周调仓一次 #run_weekly(my_trade, weekday=1, time='9:30', reference_security='000300.XSHG') #run_daily(before_trade, time='00:01',reference_security='000300.XSHG') run_daily(my_trade, time='9:45', reference_security='000300.XSHG') run_daily(print_trade_info, time='15:30', reference_security='000300.XSHG') #2-1 选股模块 def get_factor_filter_list(context,stock_list,jqfactor,sort,p): yesterday = context.previous_date score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist() df = pd.DataFrame(columns=['code','score']) df['code'] = stock_list df['score'] = score_list df = df.dropna() df = df[df['score']>0] df.sort_values(by='score', ascending=sort, inplace=True) filter_list = list(df.code)[0:int(p*len(stock_list))] return filter_list #2-2 选股模块 def get_stock_list(context): initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context,initial_list) initial_list = filter_kcb_stock(context, initial_list) initial_list = filter_st_stock(initial_list) #net_profit_growth_rate profit_growth_list=get_factor_filter_list(context, initial_list, 'net_profit_growth_rate', False, 0.1) peg_list = get_factor_filter_list(context, profit_growth_list, 'PEG', True, 0.5) #ebit_list = get_factor_filter_list(context, peg_list, 'EBIT', True, 1) #test_list = get_factor_filter_list(context, ebit_list, 'turnover_volatility', True, 1) #q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(test_list)).order_by(valuation.circulating_market_cap.asc()) q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(peg_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) final_list = list(df.code) return final_list #3-1 过滤模块-过滤停牌股票 #输入选股列表,返回剔除停牌股票后的列表 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #3-2 过滤模块-过滤ST及其他具有退市标签的股票 #输入选股列表,返回剔除ST及其他具有退市标签股票后的列表 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #3-3 过滤模块-过滤涨停的股票 #输入选股列表,返回剔除未持有且已涨停股票后的列表 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() # 已存在于持仓的股票即使涨停也不过滤,避免此股票再次可买,但因被过滤而导致选择别的股票 return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #3-4 过滤模块-过滤跌停的股票 #输入股票列表,返回剔除已跌停股票后的列表 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #3-5 过滤模块-过滤科创板 #输入股票列表,返回剔除科创板后的列表 def filter_kcb_stock(context, stock_list): return [stock for stock in stock_list if stock[0:3] != '688'] #3-6 过滤次新股 #输入股票列表,返回剔除上市日期不足250日股票后的列表 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)] #4-1 交易模块-自定义下单 #报单成功返回报单(不代表一定会成交),否则返回None,应用于 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) # 如果股票停牌,创建报单会失败,order_target_value 返回None # 如果股票涨跌停,创建报单会成功,order_target_value 返回Order,但是报单会取消 # 部成部撤的报单,聚宽状态是已撤,此时成交量>0,可通过成交量判断是否有成交 return order_target_value(security, value) #4-2 交易模块-开仓 #买入指定价值的证券,报单成功并成交(包括全部成交或部分成交,此时成交量大于0)返回True,报单失败或者报单成功但被取消(此时成交量等于0),返回False def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #4-3 交易模块-平仓 #卖出指定持仓,报单成功并全部成交返回True,报单失败或者报单成功但被取消(此时成交量等于0),或者报单非全部成交,返回False def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-4 交易模块-调仓 #当择时信号为买入时开始调仓,输入过滤模块处理后的股票列表,执行交易模块中的开平仓操作 def adjust_position(context, buy_stocks): for stock in context.portfolio.positions: if stock not in buy_stocks: log.info("[%s]已不在应买入列表中" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]已经持有无需重复买入" % (stock)) # 根据股票数量分仓 # 此处只根据可用金额平均分配购买,不能保证每个仓位平均分配 position_count = len(context.portfolio.positions) if g.stock_num > position_count: value = context.portfolio.cash / (g.stock_num - position_count) for stock in buy_stocks: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == g.stock_num: break def get_ols(x, y): slope, intercept = np.polyfit(x, y, 1) r2 = 1 - (sum((y - (slope * x + intercept))**2) / ((len(y) - 1) * np.var(y, ddof=1))) return (intercept, slope, r2) def initial_slope_series(): data = attribute_history(g.ref_stock, g.N + g.M, '1d', ['high', 'low']) return [get_ols(data.low[i:i+g.N], data.high[i:i+g.N])[1] for i in range(g.M)] # 因子标准化 def get_zscore(slope_series): mean = np.mean(slope_series) std = np.std(slope_series) return (slope_series[-1] - mean) / std # 只看RSRS因子值作为买入、持有和清仓依据,前版本还加入了移动均线的上行作为条件 def get_timing_signal(context,stock): g.mean_diff_day = 5 # 30+5 天。不知道为何? close_data = attribute_history(g.ref_stock, g.mean_day + g.mean_diff_day, '1d', ['close']) high_low_data = attribute_history(g.ref_stock, g.N, '1d', ['high', 'low']) # 这两句同上面的功能相同,愿意测试的可以试试,与avoid_future_data相互矛盾,只能取二者中的一个 # close_data = get_price(g.ref_stock, end_date=context.current_dt-datetime.timedelta(1),count=g.mean_day + g.mean_diff_day,fields=['close']) # high_low_data = get_price(g.ref_stock, end_date=context.current_dt-datetime.timedelta(1),count=g.N, fields=['high', 'low']) intercept, slope, r2 = get_ols(high_low_data.low, high_low_data.high) g.slope_series.append(slope) rsrs_score = get_zscore(g.slope_series[-g.M:]) * r2 if rsrs_score > g.score_threshold: return "BUY" elif rsrs_score < -g.score_threshold: return "SELL" else: return "KEEP" #4-5 交易模块-择时交易 #结合择时模块综合信号进行交易 def my_trade(context): #获取选股列表并过滤掉:st,st*,退市,涨停,跌停,停牌 check_out_list = get_stock_list(context) check_out_list = filter_limitup_stock(context, check_out_list) check_out_list = filter_limitdown_stock(context, check_out_list) check_out_list = filter_paused_stock(check_out_list) check_out_list = check_out_list[:g.stock_num] print('今日自选股:{}'.format(check_out_list)) #调仓 #adjust_position(context, check_out_list) g.timing_signal = get_timing_signal(context,g.ref_stock) if g.timing_signal == 'SELL': for stock in context.portfolio.positions: position = context.portfolio.positions[stock] close_position(position) elif g.timing_signal == 'BUY' or g.timing_signal == 'KEEP': adjust_position(context, check_out_list) else: pass #5-1 复盘模块-打印 #打印每日持仓信息 def print_trade_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: