量化学习平台
文章
市场宽度
背离图
登录
注册
ETF动量轮动MA乖离择时
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/35235 # 标题:ETF动量轮动MA乖离择时 # 作者:莫急莫急 # 回测请选择 分钟 from jqdata import * import numpy as np #初始化函数 def initialize(context): set_benchmark('399006.XSHE') set_option('use_real_price', True) set_option("avoid_future_data", True) set_slippage(FixedSlippage(0.001)) set_order_cost(OrderCost(open_tax=0, close_tax=0, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5), type='fund') log.set_level('order', 'error') g.stock_pool = [ '510050.XSHG', # 上证50ETF # '159915.XSHE', # 创业板ETF '159928.XSHE', # 中证消费ETF '510300.XSHG', # 沪深300ETF # '510500.XSHG', # 中证500ETF '159949.XSHE', # 创业板50ETF ] # 备选池:用流动性和市值更大的50ETF分别代替宽指ETF,500与300ETF保留一个 g.stock_num = 1 #买入评分最高的前stock_num只股票 g.momentum_day = 20 #最新动量参考最近momentum_day的 g.ref_stock = '000300.XSHG' #用ref_stock做择时计算的基础数据 run_daily(my_trade, time='14:50', reference_security='000300.XSHG') run_daily(check_lose, time='open', reference_security='000300.XSHG') # 20日收益率动量拟合取斜率最大的 def get_rank(stock_pool): rank = [] for stock in g.stock_pool: data = attribute_history(stock, g.momentum_day, '1d', ['close']) score = np.polyfit(np.arange(len(data)),data.close/data.close[0],1)[0] rank.append([stock, score]) rank.sort(key=lambda x: x[-1],reverse=True) return rank[0] # 因子标准化 def get_zscore(series): mean = np.mean(series) std = np.std(series) return (series[-1] - mean) / std # 相对均线的乖离作为择时信号,效果不如RSRS择时好,可能模型不好或者参数没有优化好, # 不过大体上每个时段都有一些超额 def get_timing_signal(stock): score_threshold = 4.0 # 择时因子阈值 data = attribute_history(g.ref_stock,200,'1d',['close']) data['bias'] = data.close/data.close.rolling(60).mean() # 计算相对60日均线的乖离 data['biasma'] = data.bias.rolling(10).mean() # 计算乖离的10日均线,降低涨落 score = get_zscore(data.biasma[-30:]) # 因子标准化 if score > score_threshold: return 'BUY' if score < -score_threshold: return 'SELL' else: return 'KEEP' #4-1 交易模块-自定义下单 #报单成功返回报单(不代表一定会成交),否则返回None,应用于 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) # 如果股票停牌,创建报单会失败,order_target_value 返回None # 如果股票涨跌停,创建报单会成功,order_target_value 返回Order,但是报单会取消 # 部成部撤的报单,聚宽状态是已撤,此时成交量>0,可通过成交量判断是否有成交 return order_target_value(security, value) #4-2 交易模块-开仓 #买入指定价值的证券,报单成功并成交(包括全部成交或部分成交,此时成交量大于0)返回True,报单失败或者报单成功但被取消(此时成交量等于0),返回False def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #4-3 交易模块-平仓 #卖出指定持仓,报单成功并全部成交返回True,报单失败或者报单成功但被取消(此时成交量等于0),或者报单非全部成交,返回False def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False def adjust_position(context, buy_stocks): for stock in context.portfolio.positions: if stock not in buy_stocks: log.info('换仓!') close_position(context.portfolio.positions[stock]) position_count = len(context.portfolio.positions) if g.stock_num > position_count: value = context.portfolio.cash / (g.stock_num - position_count) for stock in buy_stocks: if not context.portfolio.positions: open_position(stock,value) def my_trade(context): hour = context.current_dt.hour minute = context.current_dt.minute if hour == 14 and minute == 50: check_out_list = get_rank(g.stock_pool) # print('今日自选股:{}'.format(check_out_list)) timing_signal = get_timing_signal(g.ref_stock) print('今日自选及择时信号:{} {}'.format(check_out_list,timing_signal)) if timing_signal == 'SELL': for stock in context.portfolio.positions: position = context.portfolio.positions[stock] close_position(position) elif timing_signal == 'BUY' or timing_signal == 'KEEP': adjust_position(context, check_out_list) else: pass # 止损模块,有一点点用 def check_lose(context): for stk in context.portfolio.positions: position = context.portfolio.positions[stk] if position.price/position.avg_cost < 0.9: log.info('触发止损!') order_target_value(position.security, 0) ```
文章分类
关于作者
水滴
注册时间: