量化学习平台
文章
市场宽度
背离图
登录
注册
一创PEG+EBIT+turnover_volatility
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/39698 # 标题:一创PEG+EBIT+turnover_volatility # 作者:tianguong #导入函数库 from jqdata import * import numpy as np import pandas as pd #初始化函数 def initialize(context): set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #选股数目 g.stock_num = 5 # 设置交易时间,每天运行 run_weekly(blue_chip_small_cap, weekday=1, time='9:30', reference_security='000300.XSHG') # PEG、EBIT过滤,小市值选股 def get_stock_list(context): initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context,initial_list) initial_list = filter_kcb_stock(context, initial_list) initial_list = filter_st_stock(initial_list) peg_list = get_inc_net_profit_ttm(context, initial_list, 0.1) ebit_list = get_EBIT(context, peg_list, 0.25) test_list = get_turnover_volatility(context, ebit_list, 0.5) q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(test_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) final_list = list(df.code) return final_list #过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() # 已存在于持仓的股票即使涨停也不过滤,避免此股票再次可买,但因被过滤而导致选择别的股票 return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #过滤科创板 def filter_kcb_stock(context, stock_list): return [stock for stock in stock_list if stock[0:3] != '688'] #过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)] #下单交易 def order_target_value_(security, value): if value == 0: log.debug("卖出 %s" % (security)) else: log.debug("调整 %s 市值到 %f" % (security, value)) # 如果股票停牌,创建报单会失败,order_target_value 返回None # 如果股票涨跌停,创建报单会成功,order_target_value 返回Order,但是报单会取消 # 部成部撤的报单,聚宽状态是已撤,此时成交量>0,可通过成交量判断是否有成交 return order_target_value(security, value) #开仓买入 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #平仓卖出 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #调整仓位 def adjust_position(context, buy_stocks): for stock in context.portfolio.positions: if stock not in buy_stocks: position = context.portfolio.positions[stock] close_position(position) # 根据可用金额平均分配购买,不能保证每个仓位平均分配 position_count = len(context.portfolio.positions) if g.stock_num > position_count: value = context.portfolio.cash / (g.stock_num - position_count) for stock in buy_stocks: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == g.stock_num: break #绩优小市值策略 def blue_chip_small_cap(context): #获取选股列表并过滤掉:st,st*,退市,涨停,跌停,停牌 check_out_list = get_stock_list(context) check_out_list = filter_limitup_stock(context, check_out_list) check_out_list = filter_limitdown_stock(context, check_out_list) check_out_list = filter_paused_stock(check_out_list) check_out_list = check_out_list[:g.stock_num] print('入选股票:{}'.format(check_out_list)) adjust_position(context, check_out_list) def get_inc_net_profit_ttm(context, stock_list, p): date_list = get_quarters(context) q = query( valuation.code, valuation.pe_ratio, valuation.circulating_market_cap ).filter( valuation.code.in_(stock_list) ) df = get_fundamentals(q) df = df.set_index('code', drop=False) stock_list = df.code for qdate in date_list: q = query( valuation.code, income.np_parent_company_owners, ).filter( valuation.code.in_(stock_list) ) df1 = get_fundamentals(q, statDate=qdate) df1 = df1.set_index('code', drop=False) df[qdate] = df1['np_parent_company_owners'] df = df.dropna(axis=0, how="any") df['inc_net_profit_ttm'] = df[date_list[4:]].sum(axis=1)/df[date_list[:4]].sum(axis=1) - 1 df['peg1'] = df['pe_ratio']/(df['inc_net_profit_ttm']*100) df = df[df['peg1']>0] df.sort_values(by='peg1', ascending=True, inplace=True) # df.sort('peg1', ascending=True, inplace=True) filter_list = list(df.code)[0:int(p*len(stock_list))] return filter_list def get_quarters(context): pdate = str(context.previous_date) year = int(pdate[:4]) month_and_day = pdate[5:10] statDate_list = [] if month_and_day < '05-01': statDate_list = [str(year-3)+'q4',str(year-2)+'q1',str(year-2)+'q2',str(year-2)+'q3', str(year-2)+'q4', str(year-1)+'q1', str(year-1)+'q2', str(year-1)+'q3'] elif month_and_day >= '05-01' and month_and_day < '09-01': statDate_list = [str(year-2)+'q2',str(year-2)+'q3',str(year-2)+'q4', str(year-1)+'q1', str(year-1)+'q2',str(year-1)+'q3', str(year-1)+'q4', str(year)+'q1'] elif month_and_day >= '09-01' and month_and_day < '11-01': statDate_list = [str(year-2)+'q3', str(year-2)+'q4', str(year-1)+'q1', str(year-1)+'q2', str(year-1)+'q3', str(year-1)+'q4', str(year)+'q1', str(year)+'q2'] elif month_and_day >= '11-01': statDate_list = [str(year-2)+'q4', str(year-1)+'q1', str(year-1)+'q2', str(year-1)+'q3', str(year-1)+'q4', str(year)+'q1', str(year)+'q2', str(year)+'q3'] return statDate_list # EBIT def get_EBIT(context, stock_list, p): q = query( valuation.code, income.net_profit, income.income_tax_expense, income.financial_expense ).filter( valuation.code.in_(stock_list) ) df = get_fundamentals(q) df = df.set_index('code', drop=False) df = df.dropna(axis=0, how="any") df['EBIT1'] = df['net_profit']+df['income_tax_expense']+df['financial_expense'] df = df[df['EBIT1']>0] df.sort_values(by='EBIT1', ascending=True, inplace=True) # df.sort('EBIT1', ascending=True, inplace=True) filter_list = list(df.code)[0:int(p*len(stock_list))] return filter_list # 换手率方差 def get_turnover_volatility(context, stock_list, p): days=20 total_count = len(stock_list) max_query = int(5000/days - 1) n = 1 df_all = pd.DataFrame() while (n-1)*max_query < total_count: stocks = [] if n*max_query > total_count: stocks = stock_list[(n-1)*max_query:] else: stocks = stock_list[(n-1)*max_query:n*max_query] q = query( valuation.code, valuation.turnover_ratio ).filter( valuation.code.in_(stocks) ) df = get_fundamentals_continuously(q, end_date=context.previous_date, count=days).turnover_ratio.T df['turnover_volatility'] = df.std(axis=1)/100 df_all = df_all.append(df) n = n+1 df_all = df_all.dropna(axis=0, how="any") df_all = df_all[df_all['turnover_volatility']>0] df.sort_values(by='turnover_volatility', ascending=True, inplace=True) # df_all.sort('turnover_volatility', ascending=True, inplace=True) filter_list = list(df_all.index)[0:int(p*len(stock_list))] return filter_list ```
文章分类
关于作者
水滴
注册时间: