量化学习平台
文章
市场宽度
背离图
登录
注册
基本面策略,一种新思路,超额376%
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/40560 # 标题:新策略,一种新思路,超额376%! # 作者:hello friends # 回测资金 1000000 import statsmodels.api as sm from jqdata import * from jqfactor import get_factor_values # 初始化函数 def initialize(context): # 设定基准 set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 过滤掉order系列API产生的比error级别低的log log.set_level('order', 'error') # 初始化全局变量 g.stock_num = 8#持股数 g.limit_days = 20#用来检查最近20天内列表中有涨停的股票 g.hold_list = [] g.history_hold_list = [] g.not_buy_again_list = [] # 设置交易时间,每天运行 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') #每天获取g.hold_list已持仓列表、g.not_buy_again_list20天内买过的接下来不买的股的列表、g.high_limit_list昨日涨停列表 #run_weekly(weekly_adjustment, weekday=1, time='9:30', reference_security='000300.XSHG') run_monthly(monthly_adjustment, monthday=1, time='9:30', reference_security='000300.XSHG') #每周获取股票列表,去除最近20天内曾经涨停过的和曾经买过的股,去掉下跌趋势明显的 run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG') #把昨日涨停今天没涨停的股票卖出 # 1-1 选股模块 def get_single_factor_list(context, stock_list, jqfactor, sort, p1, p2): #这个函数是将股票列表按照选取的因子进行按高或者低排序,返回前p2比例的股票 # type: (Context, list, str, bool, float, float) -> list yesterday = context.previous_date s_score = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1 )[jqfactor].iloc[0].dropna().sort_values(ascending=sort) return s_score.index[int(p1 * len(stock_list)):int(p2 * len(stock_list))].tolist() def sorted_by_circulating_market_cap(stock_list, n_limit_top=25):#把股票列表按市值排序 取前25名 q = query( valuation.code, ).filter( valuation.code.in_(stock_list), indicator.eps > 0 ).order_by( valuation.circulating_market_cap.asc() ).limit( n_limit_top ) return get_fundamentals(q)['code'].tolist() # 1-2 选股模块:根据营业收入增长率、盈利增长率、PEG等因子找出股票 def get_stock_list(context): # type: (Context) -> list # 去掉次新股 by_date = context.previous_date - datetime.timedelta(days=375) initial_list = get_all_securities(date=by_date).index.tolist() # 去科创,ST initial_list = filter_kcb_stock(initial_list) initial_list = filter_st_stock(initial_list) # 1. 取质量因子扣非利润比的前30% sg_list = get_single_factor_list(context, initial_list, 'adjusted_profit_to_total_profit', False, 0, 0.3) print('测试sg%s'%len(sg_list)) # 2. MS 复合增长率, 从大到小的前8%; factor_list = [ 'short_term_predicted_earnings_growth', # 1年预期利润增长率 'long_term_predicted_earnings_growth', # 3年预期利润增长率 'net_profit_growth_rate', # 净利润增长率 'earnings_growth', # 5年盈利增长率 ] factor_values = get_factor_values(sg_list, factor_list, end_date=context.previous_date, count=1) df = pd.DataFrame(index=sg_list) for factor in factor_list: df[factor] = factor_values[factor].iloc[0] df['total_score'] = 0.2* df['short_term_predicted_earnings_growth'] + 0.4 * df['long_term_predicted_earnings_growth'] + 0.2 * df[ 'net_profit_growth_rate'] + 0.2 * df['earnings_growth'] ms_list = df.sort_values(by=['total_score'], ascending=False).index[:int(0.08 * len(df))].tolist() print('测试ms%s'%len(ms_list)) # 3: PEG,升序前20%\TURNOVER_VOLATILITY,升序前90%;再按流通市值升序,取前25名 peg_list = get_single_factor_list(context, ms_list, 'PEG', True, 0, 0.2) peg_list = get_single_factor_list(context, ms_list, 'turnover_volatility', True, 0, 0.8) peg_list = sorted_by_circulating_market_cap(peg_list) print('测试peg%s'%len(peg_list)) print('选股结果:',peg_list) return peg_list # 1-3 准备股票池 def prepare_stock_list(context): # 获取已持有列表 g.hold_list = list(context.portfolio.positions) # 获取最近一段时间持有过的股票列表 g.history_hold_list.append(g.hold_list) if len(g.history_hold_list) >= g.limit_days: g.history_hold_list = g.history_hold_list[-g.limit_days:] # temp_set = set() for hold_list in g.history_hold_list: temp_set = temp_set.union(set(hold_list))#通过set.union()去重 # g.not_buy_again_list = list(temp_set)#不买最近20天买过的股票 # 获取持仓的昨日涨停列表 g.high_limit_list = [] if g.hold_list: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close', 'high_limit', 'paused'], count=1, panel=False) g.high_limit_list = df.query('close==high_limit and paused==0')['code'].tolist()#paused为0表示不停牌 # 1-4 整体调整持仓 def monthly_adjustment(context): # type: (Context) -> None # 获取应买入列表 target_list = get_stock_list(context)#获取股票列表 # target_list = filter_paused_stock(target_list) target_list = filter_limit_stock(context, target_list) # target_list中,去除最近20天内曾经涨停过的和曾经买过的股 recent_limit_up_list = get_recent_limit_up_stock(context, target_list, g.limit_days) black_list = list(set(g.not_buy_again_list).intersection(set(recent_limit_up_list))) target_list = [stock for stock in target_list if stock not in black_list] # 最近20天的MA20的斜率,去掉下跌趋势明显的,即斜率<-2的 h_ma = history(20 + 20, '1d', 'close', target_list).rolling(window=20).mean().iloc[20:]#df.rolling(window=?).mean()将DF的最近几个窗口(或值)进行滚动求平均 #上面取最后20行 X = np.arange(len(h_ma))#生成0、1、...19的数组 tmp_target_list = [] for stock in target_list: MA_N_Arr = h_ma[stock].values#得到每个股票最近20天的MA20数值 MA_N_Arr = MA_N_Arr - MA_N_Arr[0] # 截距归零,理解成标准化 slope = round(sm.OLS(MA_N_Arr, X).fit().params[0] * 100, 1)# Statsmodels 中 OLS 回归功能sm.OLS(因变量,自变量),在 OLS之后调用拟合函数 fit(), #才进行回归运算,并且得到RegressionResultsWrapper结果,它包含了这组数据进行回归拟合的结果摘要。调用 params 可以查看计算出的回归系数 b0,b1,…,bn。 #params[0]是为了去除列表,取具体值。sm.OLS(Y,X).fit().summary()可以看总体回归情况 #print("测试%s"%sm.OLS(MA_N_Arr, X).fit().summary()) remove_it = False if slope < -2: if stock not in g.hold_list: print('{}下降趋势明显,切勿开仓'.format(stock)) remove_it = True if not remove_it: tmp_target_list.append(stock) # target_list = tmp_target_list # 调仓:不在列表,昨日未涨停的持仓票卖出。 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.high_limit_list): log.info("卖出[%s]" % stock) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % stock) position_count = len(context.portfolio.positions) target_num = g.stock_num if target_num > position_count: value = context.portfolio.available_cash / (target_num - position_count) for stock in target_list: if stock not in context.portfolio.positions: if open_position(stock, value): if len(context.portfolio.positions) >= g.stock_num: break # 1-5 调整昨日涨停股票 def check_limit_up(context): current_data = get_current_data() if g.high_limit_list:#if list: list非0非空,则为true for stock in g.high_limit_list: if current_data[stock].last_price < current_data[stock].high_limit: log.info("[%s]涨停打开,卖出" % stock) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % stock) # 2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] # 2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not ( current_data[stock].is_st or 'ST' in current_data[stock].name or '*' in current_data[stock].name or '退' in current_data[stock].name)] # 2-3 获取最近rencent_days个交易日内有涨停的股票列表 def get_recent_limit_up_stock(context, stock_list, recent_days): # type: (Context, list, int) -> list yesterday = context.previous_date h = get_price(stock_list, end_date=yesterday, frequency='daily', fields=['close', 'high_limit', 'paused'], count=recent_days, panel=False) s_limit = h.query('close==high_limit and paused==0').groupby('code')['high_limit'].count() return s_limit.index.tolist() # 2-4 过滤涨停的股票 def filter_limit_stock(context, stock_list): # type: (Context, list) -> list current_data = get_current_data() holdings = list(context.portfolio.positions) return [stock for stock in stock_list if (stock in holdings) or current_data[stock].low_limit < current_data[stock].last_price < current_data[stock].high_limit] # 2-6 过滤科创板 def filter_kcb_stock(stock_list): return [stock for stock in stock_list if not stock.startswith('68')] # 3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % security) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) # 3-2 交易模块-开仓 def open_position(security, value): _order = order_target_value_(security, value) if _order is not None and _order.filled > 0: return True return False # 3-3 交易模块-平仓 def close_position(position): security = position.security _order = order_target_value_(security, 0) # 可能会因停牌失败 if _order is not None: if _order.status == OrderStatus.held and _order.filled == _order.amount: return True return False ```
文章分类
关于作者
水滴
注册时间: