量化学习平台
文章
市场宽度
背离图
登录
注册
高增股池小市值轮动
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47330 # 标题:此消彼长 # 作者:明曦 # 原回测条件:2016-01-01 到 2024-03-28, ¥500000, 每天 #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd #初始化函数 def initialize(context): # 设定基准 set_benchmark('399303.XSHE') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #初始化全局变量 g.small_stock_num=5 g.big_stock_num=5 g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.factor_list =['non_recurring_gain_loss', 'non_operating_net_profit_ttm', 'roe_ttm_8y', 'sharpe_ratio_20'] g.coef_list =[-1.3651516084272432e-13, -3.673549665003535e-14, -0.006872269236387061, -3.922028093095638e-12] run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG') #检查持仓中的涨停股是否需要卖出 run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') run_monthly(monthly_adjustment, 1, 'open') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #1-2 选股模块 def monthly_adjustment(context): yesterday = context.previous_date initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) initial_list = filter_paused_stock(initial_list) initial_list = filter_limitup_stock(context, initial_list) initial_list = filter_limitdown_stock(context, initial_list) #MS factor_values = get_factor_values(initial_list, [ g.factor_list[0], g.factor_list[1], g.factor_list[2], g.factor_list[3], ], end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) df[g.factor_list[0]] = list(factor_values[g.factor_list[0]].T.iloc[:,0]) df[g.factor_list[1]] = list(factor_values[g.factor_list[1]].T.iloc[:,0]) df[g.factor_list[2]] = list(factor_values[g.factor_list[2]].T.iloc[:,0]) df[g.factor_list[3]] = list(factor_values[g.factor_list[3]].T.iloc[:,0]) df = df.dropna() df['total_score'] = g.coef_list[0]*df[g.factor_list[0]] + g.coef_list[1]*df[g.factor_list[1]] + g.coef_list[2]*df[g.factor_list[2]] + g.coef_list[3]*df[g.factor_list[3]] df = df.sort_values(by=['total_score'], ascending=False) #分数越高即预测未来收益越高,排序默认降序 complex_factor_list = list(df.index)[:int(0.1*len(list(df.index)))] q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(complex_factor_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) df = df[df['eps']>0] small_stock_list = list(df.code) small_stock_list = small_stock_list[:min(g.small_stock_num, len(small_stock_list))] df1 = get_fundamentals(query( valuation.code, ).filter( valuation.code.in_(initial_list), valuation.pe_ratio_lyr.between(0,30),#市盈率 valuation.ps_ratio.between(0,8),#市销率TTM valuation.pcf_ratio<10,#市现率TTM indicator.eps>0.3,#每股收益 indicator.roe>0.1,#净资产收益率 indicator.net_profit_margin>0.1,#销售净利率 indicator.gross_profit_margin>0.3,#销售毛利率 indicator.inc_revenue_year_on_year>0.25,#营业收入同比增长率 ).order_by( valuation.market_cap.desc()).limit(g.big_stock_num)).set_index('code').index.tolist() big_stock_list=df1 final_list=small_stock_list+big_stock_list #调仓卖出 for stock in g.hold_list: if (stock not in final_list) and (stock not in g.yesterday_HL_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(final_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in final_list: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == target_num: break #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=375)] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-1 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: