量化学习平台
文章
市场宽度
背离图
登录
注册
国九条 年化130.74% 回撤11% 众神Debug版
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47953 # 标题:国九条 年化130.74% 回撤11% 众神Debug版 # 作者:热情的刀 # 原回测条件:2020-02-01 到 2024-04-01, ¥100000, 每天 # 众神Debug版 #蒋老师操刀修改两个模块1-8 动态调仓代码 2.1 筛选审计意见 # 克隆自聚宽文章:https://www.joinquant.com/post/47946 # 标题:国九条后中小板微盘小改,年化135.40% # 作者:子匀 from jqdata import * from jqfactor import * import numpy as np import pandas as pd from datetime import time,date from jqdata import finance #初始化函数 def initialize(context): # 开启防未来函数 set_option('avoid_future_data', True) # 成交量设置 #set_option('order_volume_ratio', 0.10) # 设定基准 set_benchmark('399101.XSHE') # 用真实价格交易 set_option('use_real_price', True) # 将滑点设置为0 set_slippage(FixedSlippage(3/10000)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=2.5/10000, close_commission=2.5/10000, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') log.set_level('system', 'error') log.set_level('strategy', 'debug') #初始化全局变量 bool g.trading_signal = True # 是否为可交易日 g.run_stoploss = True # 是否进行止损 g.filter_audit = True # 是否筛选审计意见 g.filter_bonus= True #是否筛选红利 g.adjust_num = True # 是否调整持仓数量 #全局变量list g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.target_list = [] g.pass_months = [1,4] # 空仓的月份 g.limitup_stocks = [] # 记录涨停的股票避免再次买入 g.Expected_bonus= [5] #设定引入超额收益的因子的月份 #全局变量float/str g.min_mv = 10 # 股票最小市值要求 g.max_mv = 10000 # 股票最大市值要求 g.stock_num = 4 # 持股数量 g.stoploss_list = [] # 止损卖出列表 g.other_sale = [] # 其他卖出列表 g.stoploss_strategy = 3 # 1为止损线止损,2为市场趋势止损, 3为联合1、2策略 g.stoploss_limit = 0.09 # 止损线 g.stoploss_market = 0.05 # 市场趋势止损参数 g.highest = 50 # 股票单价上限设置 g.money_etf = '511880.XSHG' # 空仓月份持有银华日利ETF # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_daily(trade_afternoon, time='14:00', reference_security='399101.XSHE') #检查持仓中的涨停股是否需要卖出 run_daily(stop_loss, time='10:00') # 止损函数 run_daily(close_account, '14:50') run_weekly(weekly_adjustment,2,'10:00') #run_weekly(print_position_info, 5, time='15:10', reference_security='000300.XSHG') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.limitup_stocks = [] g.hold_list = list(context.portfolio.positions) #获取昨日涨停列表 if g.hold_list: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit','low_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = df['code'].tolist() else: g.yesterday_HL_list = [] #判断今天是否为账户资金再平衡的日期 g.trading_signal = today_is_between(context) #1-2 选股模块 def get_stock_list(context): final_list = [] MKT_index = '399101.XSHE' initial_list = filter_stocks(context, get_index_stocks(MKT_index)) # 国九更新:过滤近一年净利润为负且营业收入小于1亿的 # 国九更新:过滤近一年期末净资产为负的 (经查询没有为负数的,所以直接pass这条) # 国九更新:过滤近一年审计建议无法出具或者为负面建议的 (经过净利润等筛选,审计意见几乎不会存在异常) q = query( valuation.code, ).filter( valuation.code.in_(initial_list), valuation.market_cap.between(g.min_mv,g.max_mv), # 总市值 circulating_market_cap/market_cap 单位:亿元 income.np_parent_company_owners > 0, # 归属于母公司所有者的净利润(元) income.net_profit > 0, # 净利润(元) income.operating_revenue > 1e8, # 营业收入 (元) indicator.roe>0, indicator.roa>0, ).order_by(valuation.market_cap.asc()).limit(g.stock_num*3) df = get_fundamentals(q) final_list = df['code'].tolist() #筛选审计意见 if g.filter_audit: final_list = filter_audit(context, final_list) #筛选红利 if g.filter_bonus: final_list = bonus_filter(context,final_list) if final_list: last_prices = history(1, unit='1d', field='close', security_list=final_list) return [stock for stock in final_list if stock in g.hold_list or last_prices[stock][-1] <= g.highest] else: # 由于有时候选股条件苛刻,所以会没有股票入选,这时买入银华日利ETF log.info('无适合股票,买入ETF') return [g.money_etf] #1-3 整体调整持仓 def weekly_adjustment(context): if g.trading_signal: if g.adjust_num: new_num = adjust_stock_num(context) g.stock_num = new_num log.info(f'持仓数量修改为{new_num}') g.target_list = get_stock_list(context)[:g.stock_num] log.info(str(g.target_list)) sell_list = [stock for stock in g.hold_list if stock not in g.target_list and stock not in g.yesterday_HL_list] hold_list = [stock for stock in g.hold_list if stock in g.target_list or stock in g.yesterday_HL_list] log.info("卖出[%s]" % (str(sell_list))) log.info("已持有[%s]" % (str(hold_list))) for stock in sell_list: order_target_value(stock, 0) buy_list = [stock for stock in g.target_list if stock not in g.hold_list] buy_security(context, buy_list,len(buy_list)) else: buy_security(context, [g.money_etf],1) log.info('该月份为空仓月份,持有银华日利ETF') #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) order_target_value(stock, 0) g.other_sale.append(stock) g.limitup_stocks.append(stock) else: log.info("[%s]涨停,继续持有" % (stock)) #1-5 如果昨天有股票卖出或者买入失败造成空仓,剩余的金额当日买入 def check_remain_amount(context): addstock_num = len(g.other_sale) loss_num = len(g.stoploss_list) empty_num = addstock_num + loss_num g.hold_list = context.portfolio.positions if len(g.hold_list) < g.stock_num: # 计算需要买入的股票数量,止损仓位补足货币etf # 可替换下一行代码以更换逻辑:改为将清空仓位全部补足股票,而非原作中止损仓位补充货币etf # num_stocks_to_buy = min(empty_num,g.stock_num-len(g.hold_list)) num_stocks_to_buy = min(addstock_num,g.stock_num-len(g.hold_list)) target_list = [stock for stock in g.target_list if stock not in g.limitup_stocks][:num_stocks_to_buy] log.info('有余额可用'+str(round((context.portfolio.cash),2))+'元。买入'+ str(target_list)) buy_security(context,target_list,len(target_list)) if loss_num !=0: log.info('有余额可用'+str(round((context.portfolio.cash),2))+'元。买入货币基金'+ str(g.money_etf)) buy_security(context,[g.money_etf],loss_num) g.stoploss_list = [] g.other_sale = [] #1-6 下午检查交易 def trade_afternoon(context): if g.trading_signal: check_limit_up(context) check_remain_amount(context) buy_security(context,[g.money_etf],1) #1-7 止盈止损 def stop_loss(context): if g.run_stoploss: current_positions = context.portfolio.positions if g.stoploss_strategy == 1 or g.stoploss_strategy == 3: for stock in current_positions.keys(): price = current_positions[stock].price avg_cost = current_positions[stock].avg_cost # 个股盈利止盈 if price >= avg_cost * 2: order_target_value(stock, 0) log.debug("收益100%止盈,卖出{}".format(stock)) g.other_sale.append(stock) # 个股止损 elif price < avg_cost * (1 - g.stoploss_limit): order_target_value(stock, 0) log.debug("收益止损,卖出{}".format(stock)) g.stoploss_list.append(stock) if g.stoploss_strategy == 2 or g.stoploss_strategy == 3: stock_df = get_price(security=get_index_stocks('399101.XSHE') ,end_date=context.previous_date, frequency='daily' ,fields=['close', 'open'], count=1, panel=False) # 计算成分股平均涨跌,即指数涨跌幅 down_ratio = (1 - stock_df['close'] / stock_df['open']).mean() # 市场大跌止损 if down_ratio >= g.stoploss_market: for stock in current_positions.keys(): g.stoploss_list.append(stock) order_target_value(stock, 0) log.debug("大盘惨跌,平均降幅{:.2%}".format(down_ratio)) #1-8 动态调仓代码 def adjust_stock_num(context): arr_close = history(10,'1d','close','399101.XSHE', df=False)['399101.XSHE'] bias =100*(arr_close[-1]/arr_close.mean()-1) #根据差值结果返回数字 result = \ 3 if bias >= 5 else \ 3 if 2 <= bias else \ 4 if -2 <= bias else \ 5 if -5 <= bias else \ 6 return result #2 过滤各种股票 def filter_stocks(context, stock_list): current_data = get_current_data() # 涨跌停和最近价格的判断 last_prices = history(1, unit='1m', field='close', security_list=stock_list) # 过滤标准 filtered_stocks = [] for stock in stock_list: if current_data[stock].paused: # 停牌 continue if current_data[stock].is_st: # ST continue if '退' in current_data[stock].name: # 退市 continue if stock.startswith('30') or stock.startswith('68') or stock.startswith('8') or stock.startswith('4'): # 市场类型 continue if not (stock in context.portfolio.positions or last_prices[stock][-1] < current_data[stock].high_limit): # 涨停 continue if not (stock in context.portfolio.positions or last_prices[stock][-1] > current_data[stock].low_limit): # 跌停 continue # 次新股过滤 start_date = get_security_info(stock).start_date if context.previous_date - start_date < timedelta(days=375): continue filtered_stocks.append(stock) return filtered_stocks #2.1 筛选审计意见 def filter_audit(context, stock_list): #剔除近三年内有不合格(opinion_type_id >2 且不是 6)审计意见的股票 start_date = datetime.date(context.current_dt.year - 3,1,1).strftime('%Y-%m-%d') end_date = context.previous_date.strftime('%Y-%m-%d') q = query(finance.STK_AUDIT_OPINION).filter(finance.STK_AUDIT_OPINION.code.in_(stock_list), finance.STK_AUDIT_OPINION.report_type == 0, #0:财务报表审计报告 finance.STK_AUDIT_OPINION.opinion_type_id >2, #1:无保留,2:无保留带解释性说明 finance.STK_AUDIT_OPINION.opinion_type_id != 6,#6:未经审计,季报 finance.STK_AUDIT_OPINION.end_date >= start_date, finance.STK_AUDIT_OPINION.pub_date <= end_date) df = finance.run_query(q) bad_companies = df['code'].unique().tolist() return [s for s in stock_list if s not in bad_companies] #2.2 #获取红利列表 def bonus_filter(context,stock_list): #print(f'进入红利筛选前,共{len(stock_list)}只股票') year=context.previous_date.year start_date=datetime.date(year, 1, 1) end_date=context.previous_date #在指定月份开启超额因子 if end_date.month in g.Expected_bonus: q = query(finance.STK_XR_XD.code,finance.STK_XR_XD.company_name, finance.STK_XR_XD.board_plan_pub_date,finance.STK_XR_XD.bonus_amount_rmb,finance.STK_XR_XD.bonus_ratio_rmb ).filter( #董事会预案发生在今年 finance.STK_XR_XD.board_plan_pub_date>start_date, #董事会预案的发布日期小于等于前一日 finance.STK_XR_XD.board_plan_pub_date<=end_date, #人民币分红大于0 finance.STK_XR_XD.bonus_ratio_rmb>0, #在stock_list中 finance.STK_XR_XD.code.in_(stock_list)) Expected_bonus_df = finance.run_query(q) if len(Expected_bonus_df)>0: bonus_list=Expected_bonus_df['code'].unique().tolist() price_df=history(1, unit='1d', field='close', security_list=bonus_list, df=True, skip_paused=False, fq='pre') price_df=price_df.T price_df.rename(columns={price_df.columns[0]:'Close_now'},inplace=True) price_df['code']=price_df.index Expected_bonus_df=pd.merge(Expected_bonus_df,price_df,on=('code'),how='left') Expected_bonus_df['bonus_ratio']=(Expected_bonus_df['bonus_ratio_rmb'])/Expected_bonus_df['Close_now'] Expected_bonus_df=Expected_bonus_df.sort_values(by='bonus_ratio',ascending=True) bonus_list=Expected_bonus_df['code'].unique().tolist() else: bonus_list=[] else: #平日开启非年度分红的 reprot_date = datetime.date(year-1, 12, 31) q = query(finance.STK_XR_XD.code,finance.STK_XR_XD.company_name,finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb,finance.STK_XR_XD.bonus_ratio_rmb ).filter( #年度分红 finance.STK_XR_XD.report_date ==reprot_date, finance.STK_XR_XD.bonus_type=='年度分红' , #公布日期小于等于前一天 finance.STK_XR_XD.board_plan_pub_date<=end_date, finance.STK_XR_XD.board_plan_bonusnote=='不分配不转增', finance.STK_XR_XD.code.in_(stock_list)) no_year_bonus = finance.run_query(q) no_year_bonus_list=no_year_bonus['code'].unique().tolist() #排除今年不分红的股票 bonus_list=[code for code in stock_list if code not in no_year_bonus_list] bonus_list=short_by_market_cap(context,bonus_list) log.debug(f'进行实际红利筛选后,原有{len(stock_list)}只股票,筛选后剩余{len(bonus_list)}只股票') if len(bonus_list)< g.stock_num: bonus_list.extend([x for x in stock_list if x not in bonus_list ][:g.stock_num-len(bonus_list)]) return bonus_list #3-4 买入模块 def buy_security(context,target_list,num): #调仓买入 position_count = len(context.portfolio.positions) target_num = num if target_num !=0: value = context.portfolio.cash / target_num for stock in target_list: order_target_value(stock, value) log.info("买入[%s](%s元)" % (stock,value)) if len(context.portfolio.positions) == g.stock_num: break #4-1 判断今天是否跳过月份 def today_is_between(context): # 根据g.pass_month跳过指定月份 month = context.current_dt.month # 判断当前月份是否在指定月份范围内 if month in g.pass_months: # code = '399303.XSHE' # close = history(count = 3, unit='1d', field='close', security_list= [code], df = False, skip_paused = False, fq = 'none')[code] # if close[-1] > close[-2] * 0.995 and close[-1] > close[-3] * 0.994: # return True #判断当前日期是否在指定日期范围内 return False else: return True def close_account(context): if not g.trading_signal: curr_data = get_current_data() if len(g.hold_list) != 0 and g.hold_list != [g.money_etf]: for stock in g.hold_list: if stock == g.money_etf: continue if curr_data[stock].last_price == curr_data[stock].low_limit or curr_data[stock].paused: continue order_target_value(stock, 0) log.info("卖出[%s]" % (stock)) #5 公共模块 #5-1 根据市值排序 def short_by_market_cap(context,stock_list): short_q = query( valuation.code, valuation.market_cap, # 总市值 circulating_market_cap/market_cap ).filter( valuation.code.in_(stock_list), valuation.day == context.previous_date, ).order_by(valuation.market_cap.asc()) short_df=get_fundamentals(short_q) short_list=short_df['code'].unique().tolist() return short_list def print_position_info(context): for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: