量化学习平台
文章
市场宽度
背离图
登录
注册
国九条:三年分红5千万以下且占净利润30%以下将被ST
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47624 # 标题:国九条:三年分红5千万以下且占净利润30%以下将被ST # 作者:Clarence.罗 # 原回测条件:2014-01-01 到 2024-04-01, ¥100000, 每天 # 原文网址:https://www.joinquant.com/post/47523 # 标题:十年回测 年化103.32% 最大回撤23.89% # 作者:jason_99 # 原文网址:https://www.joinquant.com/post/47346 # 标题:14-24【年化86%|胜率66%|回撤33%】无未来函数 # 作者:zycash #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd import random from datetime import time #import datetime #初始化函数 def initialize(context): # 开启防未来函数,设定基线,真实价格,滑点及交易成本 # set_option('avoid_future_data', True) set_benchmark('000001.XSHG') set_option('use_real_price', True) #统一费率 #set_slippage(PriceRelatedSlippage(0.01), type='stock') set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=2.5/10000, close_commission=2.5/10000, close_today_commission=0, min_commission=5),type='stock') g.stock_num = 10 # 过滤order中低于error级别的日志 log.set_level('order', 'error') log.set_level('system', 'error') log.set_level('strategy', 'debug') #初始化全局变量 bool g.no_trading_today_signal = False # 是否为可交易日 g.pass_april = True # 是否四月空仓 g.run_stoploss = True # 是否进行止损 #全局变量list g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.target_list = [] # 准备买入的标的 g.not_buy_again = [] # 不再买入的标的 #全局变量float/str g.m_days = 5 #取值参考天数 g.up_price = 80 # 设置股票单价 g.reason_to_sell = '' g.stoploss_strategy = 3 # 1为止损线止损,2为市场趋势止损, 3为联合1、2策略 g.stoploss_limit = 0.07 # 止损线 g.stoploss_market = 0.05 # 市场趋势止损参数 g.c = 0 # 止损天数计数器 # 设置交易运行时间 run_daily(prepare_stock_list, '8:00') # 每天开盘前更新全局参数,持仓和昨日涨停 run_weekly(weekly_adjustment,2,'10:00') # 每周二上午10点检查并调仓,不会更新卖出原因 run_daily(sell_stocks, time='10:30') # 每天检查止损函数,止损会更新卖出原因 run_daily(sell_stocks, time='14:00') # 每天检查止损函数,止损会更新卖出原因 # 涨停可能提前止盈并更新卖出原因,查看剩余金额,结合卖出原因决定是否需要买入,并重置卖出原因 run_daily(trade_afternoon, time='14:30') run_daily(close_account, '14:30') # 特殊月份提前清仓 # run_weekly(print_position_info, 5, time='15:30', reference_security='000300.XSHG') # 每周5结束后统计持仓盈亏 # run_daily(log_stocks_bought, '15:02') #1-1 更新全局参数,每天开盘前运行 def prepare_stock_list(context): # 更新已持有列表 g.hold_list= list(context.portfolio.positions.keys()) # 更新持有股票中昨日涨停的股票 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit','low_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #判断今天是否为账户资金再平衡的日期,判断是否为特殊日期 g.no_trading_today_signal = today_is_between(context) #1-2 选股模块,每周运行一遍 def get_stock_list(context): final_list = [] initial_list = get_index_stocks('399101.XSHE') # 从中小综指中选股 initial_list = filter_new_stock(context, initial_list) # 过滤次新股,上市不满1年的 initial_list = filter_kcbj_stock(initial_list) # 过滤科创北交所股票,改为保留沪深主板股票 initial_list = filter_st_stock(initial_list) # 过滤ST股票 initial_list = get_dividend_ratio_filter_list(context, initial_list, False, 0, 0.8) #股息筛选 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(initial_list), valuation.market_cap.between(5,50)).order_by(valuation.market_cap.asc()) # 5到30亿市值,从小到大排列 df_fun = get_fundamentals(q)[:100] initial_list = list(df_fun.code) initial_list = filter_paused_stock(initial_list) # 过滤停牌股票 initial_list = filter_limitup_stock(context, initial_list) # 过滤昨日涨停股票,持仓股不在此列 initial_list = filter_limitdown_stock(context, initial_list) # 过滤昨日跌停股票,持仓股不在此列 initial_list = filter_highprice_stock(context, initial_list) # 过滤股价过高的票,持仓股不在此列 print('initial_list中含有{}只股票'.format(len(initial_list))) q = query(valuation.code,valuation.market_cap).filter( valuation.code.in_(initial_list)).order_by(valuation.market_cap.asc()) df_fun = get_fundamentals(q)[:50] final_list = list(df_fun.code) return final_list # 返回前50只 #1-1 最近三年分红需大于5000万 或 最近三年分红需大于30%,按股息率排序 #借用aqa的代码: #根据上交所新规,增加了3个筛选条件: # 1.盈利且上年度未分配利润大于0, # 2 三个会计年度累计现金分红总额大于年均净利润的30%, # 3.累计分红金额大于5,000万元。 def get_dividend_ratio_filter_list(context, stock_list, is_small_to_big, p1, p2): time1 = context.previous_date time0 = time1 - datetime.timedelta(days=365) print('按付息5000万或30%以上筛选前的股票数量:',len(stock_list)) #获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合 interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000 list_len = len(stock_list) #截取不超过interval的列表并查询 q = query( finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)])) df = finance.run_query(q) #对interval的部分分别查询并拼接 if list_len > interval: df_num = list_len // interval for i in range(df_num): q = query( finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))])) temp_df = finance.run_query(q) df = df.append(temp_df) dividend = df.fillna(0) dividend = dividend.set_index('code') dividend = dividend.groupby('code').sum() temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list #获取过去三年净利润数据 if time1.month>=5:#5月后取去年 start_year=str(time1.year-1) else: #5月前取前年 start_year=str(time1.year-2) #获取3年净利润数据 np=get_history_fundamentals(temp_list, fields=[income.net_profit], watch_date=None, stat_by_year=True, stat_date=start_year, interval='1y', count=3) np = np.set_index('code') np = np.groupby('code').mean() #获取市值相关数据,用于计算股息率 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list)) cap = get_fundamentals(q, date=time1) cap = cap.set_index('code') #筛选 过去三年累计分红大于平均净利润的30% 或 累计分红>5000万 DR = pd.concat([dividend,np,cap], axis=1) DR=DR[((DR['bonus_amount_rmb']*10000)>(DR['net_profit']*0.3)) | (DR['bonus_amount_rmb']>5000)] #计算股息率 DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap'] print('按付息5000万或30%以上筛选后的股票数量::',len(list(DR.index))) #按股息率排序并筛选 #DR = DR.sort_values(by=['dividend_ratio'], ascending=is_small_to_big) #final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))] #C罗改:暂时直接 final_list = list(DR.index) return final_list #1-3 每周调整持仓 def weekly_adjustment(context): if g.no_trading_today_signal == False: #获取应买入列表 g.not_buy_again = [] # 每周重置g.not_buy_again的股票 g.target_list = get_stock_list(context) # 选取50只符合条件的股票 target_list = g.target_list[:g.stock_num] # target_list = random.sample(target_list[:8],g.stock_num) # 前8个中随机选5 log.info(str(target_list)) #调仓卖出,没有更新卖出原因 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.yesterday_HL_list): # 卖出非目标且非昨日涨停的股票 position = context.portfolio.positions[stock] if close_position(position): # 卖出股票操作 log.info("卖出[%s]" % (stock)) else: log.info("!!!卖出失败[%s]" % (stock)) else: log.info("已持有[%s]" % (stock)) #调仓买入 buy_security(context,target_list) #记录已买入股票 for stock in list(context.portfolio.positions.keys()): g.not_buy_again.append(stock) #1-7 每天定点检查止损 def sell_stocks(context): if g.run_stoploss == True: if g.stoploss_strategy == 1: for stock in context.portfolio.positions.keys(): # 股票盈利大于等于100%则卖出 if context.portfolio.positions[stock].price >= context.portfolio.positions[stock].avg_cost * 2: order_target_value(stock, 0) log.debug("收益100%止盈,卖出{}".format(stock)) # 止损 elif context.portfolio.positions[stock].price < context.portfolio.positions[stock].avg_cost * (1-g.stoploss_limit): order_target_value(stock, 0) log.debug("收益止损,卖出{}".format(stock)) g.reason_to_sell = 'stoploss' elif g.stoploss_strategy == 2: stock_df = get_price(security=get_index_stocks('399101.XSHE'), end_date=context.previous_date, frequency='daily', fields=['close', 'open'], count=1,panel=False) #down_ratio = (stock_df['close'] / stock_df['open'] < 1).sum() / len(stock_df) down_ratio = abs((stock_df['close'] / stock_df['open'] - 1).mean()) if down_ratio >= g.stoploss_market: g.reason_to_sell = 'stoploss' log.debug("大盘惨跌,平均降幅{:.2%}".format(down_ratio)) for stock in context.portfolio.positions.keys(): order_target_value(stock, 0) elif g.stoploss_strategy == 3: stock_df = get_price(security=get_index_stocks('399101.XSHE'), end_date=context.previous_date, frequency='daily', fields=['close', 'open'], count=1,panel=False) down_ratio = abs((stock_df['close'] / stock_df['open'] - 1).mean()) if down_ratio >= g.stoploss_market: g.reason_to_sell = 'stoploss' log.debug("基准指数暴跌,平均降幅{:.2%},全部清仓".format(down_ratio)) for stock in context.portfolio.positions.keys(): order_target_value(stock, 0) else: for stock in context.portfolio.positions.keys(): if context.portfolio.positions[stock].price < context.portfolio.positions[stock].avg_cost * (1-g.stoploss_limit): order_target_value(stock, 0) log.debug("达到止损,卖出{}".format(stock)) g.reason_to_sell = 'stoploss' #1-4 昨日涨停股票确定是否止盈,卖出时会记录卖出原因 def check_limit_up(context): now_time = context.current_dt # 当前时间 if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: position = context.portfolio.positions[stock] if close_position(position): log.info("[%s]涨停打开,卖出" % (stock)) g.reason_to_sell = 'limitup' else: log.info("[%s]涨停,继续持有" % (stock)) #1-5 如果账户还有金额则执行此操作,会重置卖出原因 def check_remain_amount(context): if g.reason_to_sell is 'limitup': #判断售出原因,如果是涨停售出则可以再次交易,如果是止损售出则不交易 g.hold_list= list(context.portfolio.positions.keys()) if len(g.hold_list) < g.stock_num: target_list = g.target_list # 每周更新的股票池 target_list = filter_not_buy_again(target_list) # 是排除本周调仓时已经持仓的股票 target_list = target_list[:min(g.stock_num, len(target_list))] log.info('有余额可用'+str(round((context.portfolio.cash),2))+'元。'+ str(target_list)) buy_security(context,target_list) g.reason_to_sell = '' else: g.c+=1 log.info('刚刚止损,隔1天再交易') if g.c % 2 ==0: g.reason_to_sell = '' #1-6 下午检查交易 def trade_afternoon(context): if g.no_trading_today_signal == False: check_limit_up(context) check_remain_amount(context) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤科创北交股票,改为仅保留沪深主板股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:3] == '688' or stock[:3] == '300': stock_list.remove(stock) return stock_list #2-4 过滤除持仓外涨停的股票 def filter_limitup_stock(context, stock_list): df = get_price(stock_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit','low_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] return [stock for stock in stock_list if stock in g.hold_list or stock not in list(df.code)] # last_prices = history(1, unit='1d', field='close', security_list=stock_list) # 获取前一天收盘价 # current_data = get_current_data() # return [stock for stock in stock_list if stock in context.portfolio.positions.keys() # or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤除了持仓外跌停的股票 def filter_limitdown_stock(context, stock_list): df = get_price(stock_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit','low_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['low_limit']] return [stock for stock in stock_list if stock in g.hold_list or stock not in list(df.code)] # last_prices = history(1, unit='1m', field='close', security_list=stock_list) # current_data = get_current_data() # return [stock for stock in stock_list if stock in context.portfolio.positions.keys() # or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=375)] #2-6.5 过滤除持仓外股价过高的 def filter_highprice_stock(context,stock_list): last_prices = history(1, unit='1d', field='close', security_list=stock_list) return [stock for stock in stock_list if stock in g.hold_list or last_prices[stock][-1] <= g.up_price] #2-7 删除本周一买入的股票 def filter_not_buy_again(stock_list): return [stock for stock in stock_list if stock not in g.not_buy_again] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: pass #log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓,调仓,止盈,特殊月份卖出用这个函数,止损不是这个 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #3-4 买入模块 def buy_security(context,target_list): #调仓买入 position_count = len(context.portfolio.positions) # 持仓股数量 target_num = len(target_list) # 目标股数量 if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: #if stock not in context.portfolio.positions: if open_position(stock, value): log.info("买入[%s](%s元)" % (stock,value)) g.not_buy_again.append(stock) #持仓清单,后续不希望再买入,每周清空 if len(context.portfolio.positions) == target_num: break #4-1 判断今天是否为特殊时间段 def today_is_between(context): today = context.current_dt.strftime('%m-%d') if g.pass_april is True: if (('04-05' <= today) and (today <= '04-30')) or (('01-05' <= today) and (today <= '02-05')): return True else: return False else: return False #4-2 特殊月份清仓 def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: position = context.portfolio.positions[stock] if close_position(position): log.info("卖出[%s]" % (stock)) # 记录持仓的股票 def log_stocks_bought(context): current_data = get_current_data() #获取日期 hold_stocks = context.portfolio.positions.keys() try: record(number_of_stocks_held = len(hold_stocks)) log.info('----------------------------------------------------------------------') for s in hold_stocks: q = query( valuation.code, valuation.market_cap, valuation.circulating_market_cap, valuation.pe_ratio, indicator.inc_total_revenue_year_on_year, indicator.inc_total_revenue_annual, indicator.inc_operation_profit_year_on_year, indicator.inc_operation_profit_annual, ).filter( valuation.code == s) df = get_fundamentals(q) log.info(\ s,',',current_data[s].name,\ ', 市值,',df['market_cap'][0],'亿',\ ', 流通市值,',df['circulating_market_cap'][0],'亿',\ ', 自由流通市值,', get_free_market_cap(s, context.previous_date ) ,'亿',\ ', 昨日交易额,', get_money(s, N_days_ago=1)/1e8 ,'亿',\ ', 市盈率TTM,',df['pe_ratio'][0],\ ', 季度营收同比,',df['inc_total_revenue_year_on_year'][0],\ ', 环比,',df['inc_total_revenue_annual'][0],\ ', 季度经营利润同比,',df['inc_operation_profit_year_on_year'][0],\ ', 环比,',df['inc_operation_profit_annual'][0]\ ) log.info('----------------------------------------------------------------------') for s in hold_stocks: #q = query(valuation.code,valuation.market_cap,valuation.circulating_market_cap,valuation.pe_ratio, indicator.inc_net_profit_year_on_year).filter(valuation.code == s) #df = get_fundamentals(q) log.info(\ s,',',current_data[s].name,\ ', 持股数量,',context.portfolio.positions[s].total_amount,'股',\ ', 冻结数量,',context.portfolio.positions[s].locked_amount,'股',\ ', 成本,',context.portfolio.positions[s].avg_cost,'元',\ ', 现价,',current_data[s].last_price,'元',\ ', 浮动盈亏, %.4f%%'%(current_data[s].last_price/context.portfolio.positions[s].avg_cost-1),\ ', 持仓天数,',(context.current_dt-context.portfolio.positions[s].init_time).days\ ) log.info('----------------------------------------------------------------------') log.info('总资产', context.portfolio.total_value, \ ', 股票 ', context.portfolio.positions_value, \ ', 现金', context.portfolio.available_cash, \ ', 仓位', context.portfolio.positions_value / context.portfolio.total_value ) except: print ("打印交易日志出错了") log.info('####################################################################一天结束####################################################################') ```
文章分类
关于作者
水滴
注册时间: