量化学习平台
文章
市场宽度
背离图
登录
注册
高股息策略
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/50715 # 标题:高股息策略 # 作者:雨汪 # 原回测条件:2014-01-01 到 2024-11-21, ¥500000, 每天 import pandas as pd from jqdata import * from sqlalchemy.sql.expression import or_ from jqlib.technical_analysis import * def initialize(context): # setting log.set_level('order', 'error') set_option('use_real_price', True) set_option('avoid_future_data', True) set_benchmark('000300.XSHG') # 设置滑点为理想情况,纯为了跑分好看,实际使用注释掉为好 # set_slippage(PriceRelatedSlippage(0.000)) # 设置交易成本 g.days = 0 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # strategy g.stock_num = 10 #原版为10 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_weekly(my_Trader, 1, time='09:30') run_daily(check_limit_up, time='14:00') #获取五年时间内均有分红股票及股息率 def get_dividend_ratio_filter_list(context, stock_list): def helper(stock_list, time0, time1): # print(time0, time1) #获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合 interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000 list_len = len(stock_list) #截取不超过interval的列表并查询 q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)])) df = finance.run_query(q) #对interval的部分分别查询并拼接 if list_len > interval: df_num = list_len // interval for i in range(df_num): q = query(finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date > time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))])) temp_df = finance.run_query(q) df = df.append(temp_df) dividend = df.fillna(0) dividend = dividend.set_index('code') dividend = dividend.groupby('code').sum() temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list #获取市值相关数据 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list)) cap = get_fundamentals(q, date=time1) cap = cap.set_index('code') #计算股息率 DR = pd.concat([dividend, cap] ,axis=1, sort=False) DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap'] #排序并筛选 DR = DR.sort_values(by=['dividend_ratio'], ascending=False) return DR curr_DR = pd.DataFrame() for i in range(5): time1 = context.previous_date if i == 0 else time0 time0 = time1 - datetime.timedelta(days=365) DR = helper(stock_list, time0, time1) stock_list = list(DR.index) if i == 0: curr_DR = DR final_DR = curr_DR.reindex(stock_list) # print(curr_DR.shape, curr_DR[:10]) # print(final_DR.shape, final_DR[:10]) return final_DR def my_Trader(context): # all stocks g.days = 0 dt_last = context.previous_date stocks = get_all_securities('stock', dt_last).index.tolist() stocks = filter_kcbj_stock(stocks) # print(len(stocks)) #基本面过滤 df = get_fundamentals(query(valuation.code).filter(valuation.code.in_(stocks), indicator.inc_operation_profit_year_on_year>0).order_by(valuation.market_cap.asc())) stocks = list(df.code) # print(len(stocks)) #股息率筛选 DR = get_dividend_ratio_filter_list(context, stocks) # 行业中性:每个行业最多选取2只股息率最高的股票 df = pd.DataFrame(index=DR.index) df['dividend_ratio'] = DR['dividend_ratio'] industry_infos = get_industry(security=list(DR.index), date=dt_last) for stock in industry_infos.keys(): if 'sw_l1' not in industry_infos[stock]: continue df.loc[stock, 'industry'] = industry_infos[stock]['sw_l1']['industry_code'] df = df.groupby('industry').apply(lambda x: x.nlargest(2, 'dividend_ratio')) stocks = list(df.index.levels[1]) df = DR.loc[stocks][['dividend_ratio']].sort_values(by='dividend_ratio', ascending=False) stocks = list(df[df['dividend_ratio']>0.03].index) print(len(stocks)) stocks = filter_st_stock(stocks) stocks = filter_paused_stock(stocks) stocks = filter_limitup_stock(context, stocks) stocks = filter_limitdown_stock(context, stocks) buylist = stocks current_data = get_current_data() # 调仓卖出 for stock in context.portfolio.positions: if stock not in buylist and stock not in g.high_limit_list: order = order_target_value(stock, 0) if order != None: print('卖出股票:%s %s 下单数量:%s 成交数量:%s'%(stock, current_data[stock].name, order.amount, order.filled)) else: print('卖出股票[%s %s]失败。。。' % (stock, current_data[stock].name)) if len(context.portfolio.positions) >= g.stock_num: return # 调仓买入 value = context.portfolio.total_value / g.stock_num for stock in buylist: if stock not in context.portfolio.positions and DR.loc[stock]['dividend_ratio'] > 0.04: order = order_target_value(stock, value) if order != None: print('买入:%s %s 买入金额:%s 下单数量:%s 成交数量:%s'%(stock, current_data[stock].name, value, order.amount, order.filled)) else: print('买入[%s %s]失败。。。' % (stock, current_data[stock].name)) if len(context.portfolio.positions) >= g.stock_num: break # 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.high_limit_list = [] hold_list = list(context.portfolio.positions) if hold_list: df = get_price(hold_list, end_date=context.previous_date, frequency='daily', fields=['close', 'high_limit'], count=1, panel=False) g.high_limit_list = df[df['close'] == df['high_limit']]['code'].tolist() # 调整昨日涨停股票 def check_limit_up(context): # 获取持仓的昨日涨停列表 current_data = get_current_data() if g.high_limit_list: for stock in g.high_limit_list: if current_data[stock].last_price < current_data[stock].high_limit: log.info("[%s]涨停打开,卖出" % stock) order_target(stock, 0) else: log.info("[%s]涨停,继续持有" % stock) # 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list # 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] # 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] # 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() # 已存在于持仓的股票即使涨停也不过滤,避免此股票再次可买,但因被过滤而导致选择别的股票 return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] # 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] # end ```
文章分类
关于作者
水滴
注册时间: