量化学习平台
文章
市场宽度
背离图
登录
注册
微盘股扩散指数双均线择时
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47407 # 标题:微盘股扩散指数双均线择时 # 作者:无逻辑的光 # 原回测条件:2018-01-01 到 2024-04-02, ¥100000, 每天 # 原文网址:https://www.joinquant.com/post/40981 # 标题:差不多得了 # 作者:wywy1995 # 原文网址:https://www.joinquant.com/post/40407 # 标题:wywy1995大侠的小市值AI因子选股 5组参数50股测试 # 作者:Bruce_Lee #https://www.joinquant.com/view/community/detail/30684f8d65a74eef0d704239f0eec8be?type=1&page=2 #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd import talib import datetime import pickle from six import BytesIO #初始化函数 000852.XSHG (ZZ1000) def initialize(context): # 设定基准 set_benchmark('399303.XSHE') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0.002)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 #log.set_level('order', 'error') #初始化全局变量 g.no_trading_today_signal = True g.stock_num = 5 g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.watch_day = 20 g.base = pd.read_csv(BytesIO(read_file('wp_ks_index.csv')),encoding='utf_8_sig') g.factor_list = [ (#P1Y-TPtCR-VOL120 [ 'Price1Y', #动量类因子 当前股价除以过去一年股价均值再减1 'total_profit_to_cost_ratio', #质量类因子 成本费用利润率 'VOL120' #情绪类因子 120日平均换手率 ], [ -1.6481969388084845, -0.17062057099935446, -0.061842557079243125 ] ) ] # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_daily(daily_adjustment,'9:30') run_daily(check_limit_up, '14:00') #检查持仓中的涨停股是否需要卖出 #run_daily(close_account, '14:30') run_daily(print_position_info, '15:10') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #判断今天是否为账户资金再平衡的日期 #g.no_trading_today_signal = today_is_between(context, '04-01', '04-30') or today_is_between(context, '01-01', '02-28') #获取扩散系数 def get_ks_index(context,watch_day): yesterday = context.previous_date ks_index = [] dates = get_trade_days(end_date = yesterday, count=30) for date in dates: stocks = get_index_stocks('000852.XSHG',date=date) df0 = get_price(stocks, end_date=date, fields=['close'], count=watch_day, fill_paused=False, skip_paused=False, panel=False).dropna() end_price = df0.groupby('code').apply(lambda df0: df0.iloc[-1,-1]) open_price=df0.groupby('code').apply(lambda df0: df0.iloc[0,-1]) result = pd.DataFrame() result['ks']=end_price-open_price ks = len(result[result['ks']>0])/len(result['ks']>0) ks_index.append(ks) df = pd.DataFrame() df['date'] = dates df['ks_index'] = ks_index return df ''' #获取择时信号 def get_timing_signal(context): yesterday = context.previous_date df = get_ks_index(context,g.watch_day) df['EMA6']=talib.EMA(df['ks_index'],6) df['EMA28']=talib.EMA(df['ks_index'],28) df['signal'] = np.where(df['EMA6']-df['EMA28']<0,1,0) today_sig=np.array(df['signal'])[-1] return today_sig ''' #获取择时信号 def get_timing_signal(context): yesterday = context.previous_date yesterday = yesterday.strftime("%Y-%m-%d") base = g.base base = base.loc[base['date']==yesterday] today_sig = base['signal'].tolist()[0] return today_sig #获取微盘股列表 def _get_stocks(date): initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(initial_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q,date=date) stock_list = df.code.tolist()[0:1000] return stock_list #1-2 选股模块 def get_stock_list(context): yesterday = context.previous_date final_list = [] for factor_list,coef_list in g.factor_list: initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) #MS factor_values = get_factor_values(initial_list,factor_list, end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) for i in range(len(factor_list)): df[factor_list[i]] = list(factor_values[factor_list[i]].T.iloc[:,0]) df = df.dropna() df['total_score'] = 0 for i in range(len(factor_list)): df['total_score'] += coef_list[i]*df[factor_list[i]] df = df.sort_values(by=['total_score'], ascending=False) #分数越高即预测未来收益越高,排序默认降序 complex_factor_list = list(df.index)[:int(0.1*len(list(df.index)))] q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(complex_factor_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) df = df[df['eps']>0] lst = list(df.code) lst = filter_paused_stock(lst) lst = filter_limitup_stock(context, lst) lst = filter_limitdown_stock(context, lst) lst = lst[:min(g.stock_num, len(lst))] final_list.extend(lst) final_list = list(set(final_list)) return final_list #1-3 整体调整持仓 def daily_adjustment(context): #获取应买入列表 target_stock = get_stock_list(context) target_list = target_stock[:g.stock_num] if g.no_trading_today_signal: #获得今日开平仓信号 today_sig= get_timing_signal(context) try: if today_sig > 0: for stock in g.hold_list: position = context.portfolio.positions[stock] close_position(position) print(context.previous_date,f'大盘风控止损触发,全仓卖出{stock}') return except: print('开仓!') #调仓卖出 for stock in g.hold_list: if (stock not in target_stock) and (stock not in g.yesterday_HL_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == target_num: break #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-1 判断今天是否为账户资金再平衡的日期 def today_is_between(context, start_date, end_date): today = context.current_dt.strftime('%m-%d') if (start_date <= today) and (today <= end_date): return True else: return False #4-2 清仓后次日资金可转 def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: position = context.portfolio.positions[stock] close_position(position) log.info("卖出[%s]" % (stock)) #4-3 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security name=get_security_info(securities).display_name cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('名字:{}'.format(name)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: