量化学习平台
文章
市场宽度
背离图
登录
注册
三阳三阴战法
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/37593 # 标题:三阳三阴战法 # 作者:游资小码哥 # 回测选择 分钟 # 导入函数库 from jqdata import * from jqlib.technical_analysis import * help_stock = [] # 初始化函数,设定基准等等 #需要注意的点,1.最高点前不能连续涨停 2.最高点要高过前面一年 def initialize(context): # 设定沪深300作为基准 set_benchmark('000300.XSHG') # 开启动态复权模式(真实价格) set_option('use_real_price', True) # 输出内容到日志 log.info() log.info('初始函数开始运行且全局只运行一次') # 过滤掉order系列API产生的比error级别低的log # log.set_level('order', 'error') ### 股票相关设定 ### # 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱 set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock') ## 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的) # 开盘前运行 run_daily(before_market_open, time='before_open', reference_security='000300.XSHG') # 开盘时运行 run_daily(market_open, time='every_bar', reference_security='000300.XSHG') # 收盘后运行 #run_daily(before_market_open, time='after_close', reference_security='000300.XSHG') ## 开盘时运行函数 def market_open(context): date_now = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() cash = context.portfolio.available_cash if len(help_stock) > 0: for stock in help_stock: if cash > 5000 : day_open_price = get_current_data()[stock].day_open current_price = get_current_data()[stock].last_price day_high_limit = get_current_data()[stock].high_limit close_data = attribute_history(stock, 10, '1d', ['close']) pre_date_yes = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel_yes = get_price(stock, count = 1,end_date=pre_date_yes, frequency='daily', fields=['open', 'close','high_limit','money','low','high']) pre_low_price_yes =df_panel_yes['low'].values pre_close_price_yes =df_panel_yes['close'].values pre_high_price_yes =df_panel_yes['high'].values # 取得过去五天的平均价格 if current_price > pre_close_price_yes * 1.01 and current_price < day_high_limit: print("1."+stock+"买入金额"+str(cash)) order_value(stock, cash) help_stock.remove(stock) time_sell = context.current_dt.strftime('%H:%M:%S') cday = datetime.datetime.strptime('14:40:00', '%H:%M:%S').strftime('%H:%M:%S') now = context.current_dt zeroToday = now - datetime.timedelta(hours=now.hour, minutes=now.minute, seconds=now.second,microseconds=now.microsecond) lastToday = zeroToday + datetime.timedelta(hours=9, minutes=31, seconds=00) if time_sell > cday: stock_owner = context.portfolio.positions if len(stock_owner) > 0: for stock_two in stock_owner: if context.portfolio.positions[stock_two].closeable_amount > 0: current_price_list = get_ticks(stock_two,start_dt=None, end_dt=context.current_dt, count=1, fields=['time', 'current', 'high', 'low', 'volume', 'money']) current_price = current_price_list['current'][0] day_open_price = get_current_data()[stock_two].day_open day_high_limit = get_current_data()[stock_two].high_limit #查询当天的最高价 df = get_price(stock_two, start_date=lastToday,end_date=context.current_dt, frequency='minute', fields=['high','low'],skip_paused=True) df_max_high = df["high"].max() df_min_high = df["low"].min() ##获取前一天的收盘价 pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock_two, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','low',]) pre_low_price =df_panel['low'].values pre_close_price =df_panel['close'].values close_data = attribute_history(stock_two, 10, '1d', ['close']) MA10 = close_data['close'].mean() #short_macd_dif, short_macd_dea, short_macd_macd = MACD(security,check_date=context.previous_date, SHORT = 2, LONG = 5, MID = 9) short_pre_macd_dif, short_pre_macd_dea, short_pre_macd_macd = MACD(stock_two,check_date=context.current_dt, SHORT = 2, LONG = 5, MID = 9) if stock_two == '601608.XSHG': print("macd来了-------------") print(short_pre_macd_macd[stock_two]) print(short_pre_macd_macd < 0) df_panel_3 = get_price(stock_two, count = 3,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money']) sum_plus_num_3 = (df_panel_3.loc[:,'close'] == df_panel_3.loc[:,'high_limit']).sum() #平均持仓成本 cost = context.portfolio.positions[stock_two].avg_cost if current_price < MA10 * 0.98 and pre_close_price < MA10 * 0.98: print("1.卖出股票:小于最高价0.869倍"+str(stock_two)) order_target(stock_two, 0) elif current_price > cost * 2.1: print("2.卖出股票:挣了超过60%"+str(stock_two)) order_target(stock_two, 0) elif current_price < cost * 0.90: print("3.卖出股票:亏了5%"+str(stock_two)) order_target(stock_two, 0) elif current_price < day_open_price * 0.90 and current_price < pre_close_price * 0.95 and current_price > cost * 1.1: print("#3.卖出股票:亏了5%"+str(stock_two)) order_target(stock_two, 0) elif current_price < cost * 1.15 and short_pre_macd_macd[stock_two] < 0.00 and sum_plus_num_3 == 0: print("#4.MACD不强势卖了"+str(stock_two)) order_target(stock_two, 0) else: stock_owner = context.portfolio.positions if len(stock_owner) > 0: for stock_two in stock_owner: current_price_list = get_ticks(stock_two,start_dt=None, end_dt=context.current_dt, count=1, fields=['time', 'current', 'high', 'low', 'volume', 'money']) current_price = current_price_list['current'][0] day_open_price = get_current_data()[stock_two].day_open day_high_limit = get_current_data()[stock_two].high_limit #查询当天的最高价 df = get_price(stock_two, start_date=context.portfolio.positions[stock_two].init_time,end_date=context.current_dt, frequency='minute', fields=['high'],skip_paused=True) df_max_high = df["high"].max() ##获取前一天的收盘价 pre_date = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel = get_price(stock_two, count = 1,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money','low',]) pre_low_price =df_panel['low'].values pre_close_price =df_panel['close'].values df_panel_5 = get_price(stock_two, count = 5,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_mean_5 = df_panel_5['close'].mean() df_panel_10 = get_price(stock_two, count = 10,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_mean_10 = df_panel_10['close'].mean() #查看是否连续涨停超过5次,只有后面低于前一交易日就卖 now = context.current_dt zeroToday = now - datetime.timedelta(hours=now.hour, minutes=now.minute, seconds=now.second,microseconds=now.microsecond) lastToday = zeroToday + datetime.timedelta(hours=9, minutes=31, seconds=00) df_panel_allday = get_price(stock_two, start_date=lastToday, end_date=context.current_dt, frequency='minute', fields=['high','low','close','high_limit','money']) low_allday = df_panel_allday.loc[:,"low"].min() high_allday = df_panel_allday.loc[:,"high"].max() current_price = context.portfolio.positions[stock_two].price #持仓股票的当前价 cost = context.portfolio.positions[stock_two].avg_cost df_panel_3 = get_price(stock_two, count = 3,end_date=pre_date, frequency='daily', fields=['open', 'close','high_limit','money']) sum_plus_num_3= (df_panel_3.loc[:,'close'] == df_panel_3.loc[:,'high_limit']).sum() if current_price < df_close_mean_5 * 0.98 and day_open_price > df_close_mean_5 and current_price < day_open_price * 0.95 and df_close_mean_5 > df_close_mean_10 * 1.08: print("6.卖出股票:12个板以上"+str(stock_two)) order_target(stock_two, 0) elif day_open_price < pre_close_price * 0.93 and current_price > pre_close_price * 1.07: print("7.开盘超跌"+str(stock_two)) order_target(stock_two, 0) elif day_open_price == day_high_limit and current_price < pre_close_price: print("8.高位放量,请走!"+str(stock_two)) order_target(stock_two, 0) elif sum_plus_num_3 == 3 and current_price < day_open_price * 0.93: print("9.高位放量,请走!"+str(stock_two)) order_target(stock_two, 0) elif sum_plus_num_3 == 3 and current_price < pre_close_price * 0.93: print("9.高位放量,请走!"+str(stock_two)) order_target(stock_two, 0) elif current_price > cost * 2 and day_high_limit == high_allday and current_price < day_high_limit * 0.95: print("10.高位放量,请走!"+str(stock_two)) order_target(stock_two, 0) if time_sell > cday and len(help_stock) > 0: instead_stock = help_stock for stock_remove in instead_stock: help_stock.remove(stock_remove) ## 开盘前运行函数 def before_market_open(context): date_now = (context.current_dt + timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() yesterday = (context.current_dt + timedelta(days = -91)).strftime("%Y-%m-%d") trade_date = get_trade_days(start_date=yesterday, end_date=date_now, count=None) yes_date_one = trade_date[trade_date.size-1] yes_date_two = trade_date[trade_date.size-4] yes_date_10 = trade_date[trade_date.size-15] yes_date_30 = trade_date[trade_date.size-30] stocks = list(get_all_securities(['stock']).index) pick_high_list = pick_high_limit(stocks,trade_date,yes_date_one,yes_date_two,yes_date_10,yes_date_30) codelist = filter_st(pick_high_list) filter_paused_list =filter_paused_stock(codelist) templist = filter_stock_by_days(context, filter_paused_list, 1080) for stock in templist: # result_true = high_continous(stock,trade_date,date_now,context) # if result_true == True: help_stock.append(stock) print("------今天要扫描的股票------") print(help_stock) ##选出打板的股票 def pick_high_limit(stocks,trade_date,end_date,yes_date_two,yes_date_10,yes_date_30): df_panel = get_price(stocks, count = 1,end_date=end_date, frequency='daily', fields=['open', 'close','high_limit','money','low','pre_close']) df_close = df_panel['close'] df_open = df_panel['open'] df_high_limit = df_panel['high_limit'] df_low = df_panel['low'] df_pre_close = df_panel['pre_close'] high_limit_stock = [] for stock in (stocks): if(stock[0:3] == '300' or stock[0:3] == '688'): continue _high_limit = (df_high_limit[stock].values) _close = (df_close[stock].values) _open = (df_open[stock].values) _low = (df_low[stock].values) _pre_close = (df_pre_close[stock].values) if _close > _open: df_panel_1 = get_price(stock, count = 1,end_date=end_date, frequency='daily', fields=['open', 'close','high_limit','money']) close_price_yes =df_panel_1['close'].values df_panel_3 = get_price(stock, count = 3,end_date=end_date, frequency='daily', fields=['open', 'close','high_limit','money']) sum_plus_num_3= (df_panel_3.loc[:,'close'] >= df_panel_3.loc[:,'open']).sum() df_panel_6 = get_price(stock, count = 6,end_date=end_date, frequency='daily', fields=['open', 'close','high_limit','money']) sum_plus_num_6= (df_panel_6.loc[:,'close'] > df_panel_6.loc[:,'open']).sum() sum_open_num_6= (df_panel_6.loc[:,'open'] == df_panel_6.loc[:,'high_limit']).sum() df_min_close_30 = df_panel_6["close"].min() df_panel_30 = get_price(stock, count = 30,end_date=yes_date_two, frequency='daily', fields=['high','open', 'close','high_limit','low']) time_high = df_panel_30['high'].idxmax() df_max_high_30 = df_panel_30["high"].max() df_max_close_30 = df_panel_30["close"].max() df_min_low_30 = df_panel_30["low"].min() sum_plus_num_30= (df_panel_30.loc[:,'close'] <= df_panel_30.loc[:,'open'] * 0.85).sum() if str(time_high) == 'nan': continue time_high_date = time_high.strftime("%Y-%m-%d") yes_date_ten = yes_date_10.strftime("%Y-%m-%d") rate_30 = (df_max_high_30 - df_min_low_30) / df_min_low_30 pre_date_high = (time_high + timedelta(days = -1)).strftime("%Y-%m-%d") df_panel_high = get_price(stock, start_date=pre_date_high, end_date=end_date, frequency='daily', fields=['high','open', 'close','high_limit','low']) sum_plus_num_high= (df_panel_high.loc[:,'close'] <= df_panel_high.loc[:,'open'] * 0.85).sum() df_panel_5 = get_price(stock, count = 6,end_date=time_high, frequency='daily', fields=['open', 'close','high_limit','money']) sum_open_num_5= (df_panel_5.loc[:,'close'] == df_panel_5.loc[:,'high_limit']).sum() df_panel_12 = get_price(stock, count = 12,end_date=time_high, frequency='daily', fields=['open', 'close','high_limit','money']) sum_open_num_12= (df_panel_12.loc[:,'close'] == df_panel_12.loc[:,'high_limit']).sum() rate_valley = (df_max_close_30 - df_min_close_30) / df_min_close_30 yes_date_25 = trade_date[trade_date.size-25] df_panel_25 = get_price(stock, count = 25,end_date=yes_date_25, frequency='daily', fields=['high','open', 'close','high_limit','low']) sum_open_num_25= (df_panel_25.loc[:,'close'] == df_panel_25.loc[:,'high_limit']).sum() if stock == '600218.XSHG': print(yes_date_two) print("sum_plus_num_3="+str(sum_plus_num_3)) print("sum_plus_num_6="+str(sum_plus_num_6)) print("rate_30="+str(rate_30)) print("rate_valley="+str(rate_valley)) print(time_high_date) print(yes_date_ten) print(sum_plus_num_high) print(sum_open_num_6) if sum_plus_num_3 == 3 and sum_plus_num_6 == 3 and time_high_date >= yes_date_ten and rate_30 > 1 and rate_30 < 2.5 and rate_valley > 0.15 and rate_valley < 0.4: df_panel_500 = get_price(stock, count = 380,end_date=yes_date_30, frequency='daily', fields=['high','open', 'close','high_limit','low']) df_max_high_500 = df_panel_500["high"].max() if stock == '600218.XSHG': print(df_max_high_30) print("df_max_high_500="+str(df_max_high_500)) print("df_min_close_30="+str(df_min_close_30)) print("sum_plus_num_high="+str(sum_plus_num_high)) print("sum_open_num_6="+str(sum_open_num_6)) print("sum_open_num_5="+str(sum_open_num_5)) if df_max_high_30 > df_max_high_500 and sum_open_num_25 < 5 and df_min_close_30 < df_max_high_30 and sum_plus_num_high == 0 and sum_open_num_6 == 0 and sum_open_num_5 < 5 and sum_open_num_5 >= 2: high_limit_stock.append(stock) elif df_max_high_30 > df_max_high_500 and sum_open_num_25 < 5 and df_min_close_30 < df_max_high_30 and sum_plus_num_high == 0 and sum_open_num_6 == 0 and sum_open_num_12 < 10 and sum_open_num_12 >= 7: high_limit_stock.append(stock) return high_limit_stock #查询最近最高点的位置,之前是不是连续涨 def high_continous(stock,trade_date,date_now,context): df_panel_60 = get_price(stock, count = 60,end_date=date_now, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money']) df_max_high_60 = df_panel_60["high"].max() df_min_low_60 = df_panel_60["low"].min() rate_60 = (df_max_high_60 - df_min_low_60) / df_min_low_60 df_panel = get_price(stock, count = 30,end_date=date_now, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money']) time_high = df_panel['high'].idxmax() df_max_high_30 = df_panel["high"].max() df_min_low_30 = df_panel["low"].min() #最大值和最小值的差 rate_30 = (df_max_high_30 - df_min_low_30) / df_min_low_30 # print("stock="+stock) # print(time_high) pre_date = (time_high + timedelta(days = -1)).strftime("%Y-%m-%d")#'2021-01-15'#datetime.datetime.now() df_panel_eight = get_price(stock, count = 10,end_date=pre_date, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money','pre_close']) #查询涨停板有没有四个 sum_plus_two = df_panel_eight.loc[:,'high'] - df_panel_eight.loc[:,'high_limit'] sum_plus_num_two= (df_panel_eight.loc[:,'high'] == df_panel_eight.loc[:,'high_limit']).sum() sum_plus_num_limit= (df_panel_eight.loc[:,'close'] > df_panel_eight.loc[:,'pre_close'] * 1.095).sum() df_max_high = df_panel_eight["high"].max() df_min_low = df_panel_eight["low"].min() df_panel_six = get_price(stock, count = 6,end_date=pre_date, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money','pre_close']) sum_plus_num_six= (df_panel_six.loc[:,'high'] == df_panel_six.loc[:,'high_limit']).sum() yes_date_two = trade_date[trade_date.size-2] df_panel_two = get_price(stock, count = 3,end_date=yes_date_two, frequency='daily', fields=['open', 'high', 'close','low', 'high_limit','money','pre_close']) abs_sum_two = (df_panel_two.loc[:,'close'] - df_panel_two.loc[:,'open']).abs() / df_panel_two.loc[:,'open'] abs_sum_num = (abs_sum_two < 0.03).sum() df_min_low_two = df_panel_two['close'].iloc[1] rate_date = (df_max_high_30 - df_min_low_two) / df_min_low_two #因为这个在2020-12-07没买老白干 rate_up = (df_max_high - df_min_low) / df_min_low sum_down= (df_panel_eight.loc[:,'close'] < df_panel_eight.loc[:,'open']).sum() # print("sum_plus_num_two="+str(sum_plus_num_two)) # print(sum_down) # if stock == '002612.XSHE': # print(pre_date) # print(sum_plus_num_two) # print(sum_plus_num_six) # print(rate_up) if sum_plus_num_two >= 5 and rate_30 > 0.46 and rate_60 < 2.5 and rate_date > 0.25 and rate_date < 0.32: bool_valley = check_first_valley(trade_date,stock) if bool_valley != False: return True #查看它是不是第一波山谷 def check_first_valley(trade_date,stock): int_count = 1 print("-----------") print(trade_date.size) for stock_day in trade_date: day_now = trade_date[trade_date.size-int_count-12] day_over = trade_date[trade_date.size-int_count - 18] df_panel_5 = get_price(stock, count = 5,end_date=day_now, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_mean_5 = df_panel_5['close'].mean() df_panel_5_over = get_price(stock, count = 5,end_date=day_over, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_mean_5_over = df_panel_5_over['close'].mean() df_panel_20 = get_price(stock, count = 20,end_date=day_now, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_mean_20 = df_panel_20['close'].mean() df_panel_20_over = get_price(stock, count = 20,end_date=day_over, frequency='daily', fields=['open', 'close','high_limit','money']) df_close_mean_20_over = df_panel_20_over['close'].mean() int_count = int_count + 1 if df_close_mean_5 < df_close_mean_5_over * 1.05 and df_close_mean_20 > df_close_mean_20_over * 1.2: print(str(day_now)+"----hahahah----"+str(stock)) return False if int_count > 20: return True ##过滤上市时间不满1080天的股票 def filter_stock_by_days(context, stock_list, days): tmpList = [] for stock in stock_list : days_public=(context.current_dt.date() - get_security_info(stock).start_date).days if days_public > days: tmpList.append(stock) return tmpList ##去除st的股票 def filter_st(codelist): current_data = get_current_data() codelist = [code for code in codelist if not current_data[code].is_st] return codelist def filter_paused_stock(stock_list): current_data = get_current_data() stock_list = [stock for stock in stock_list if not current_data[stock].paused] return stock_list ```
文章分类
关于作者
水滴
注册时间: