量化学习平台
文章
市场宽度
背离图
登录
注册
快过年了。不想呆在小市值的,可以拿这个策略躲一躲
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/49995 # 标题:快过节了。搞点东西给大家学习。shui一波积分(狗头保命)。 # 作者:MarioC # 原文网址:https://www.joinquant.com/post/49995 # 标题:快过节了。搞点东西给大家学习。shui一波积分(狗头保命)。 # 作者:MarioC from jqdata import * from jqfactor import * import numpy as np import pandas as pd import pickle import talib # 初始化函数 def initialize(context): # 设定基准 set_benchmark('000300.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5), type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') # 初始化全局变量 g.hold_list = [] # 当前持仓的全部股票 g.yesterday_HL_list = [] # 记录持仓中昨日涨停的股票 g.stock_num = 5 # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_monthly(weekly_adjustment, 1, '9:30') run_daily(check_limit_up, '14:00') # 检查持仓中的涨停股是否需要卖出 # 1-1 准备股票池 def prepare_stock_list(context): # 获取已持有列表 g.hold_list = [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) # 获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close', 'high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] # 1-2 选股模块 def get_stock_list(context): # 指定日期防止未来数据 yesterday = context.previous_date today = context.current_dt # 获取初始列表 initial_list = get_index_stocks('000300.XSHG', today) initial_list = filter_all_stock2(context, initial_list) final_list = [] #构建查询 lst = get_delta_stocks(context,initial_list,today) q = query( valuation.code ).filter( valuation.code.in_(lst) ).order_by( valuation.market_cap.desc()) lst = list(get_fundamentals(q).code)[:g.stock_num*3] lst = filter_paused_stock(lst) lst = filter_limitup_stock(context, lst) lst = filter_limitdown_stock(context, lst) lst = lst[:min(g.stock_num, len(lst))] for stock in lst: if stock not in final_list: final_list.append(stock) return final_list #取财务基本面的三角合集 def get_delta_stocks(context,stocklist,today_date): lastd_date = context.previous_date current_data = get_current_data() poollist=[] # df = get_history_fundamentals(stocklist,[indicator.roe,indicator.inc_net_profit_year_on_year,indicator.ocf_to_revenue] # , watch_date=lastd_date, count=4) # 连续的4个季度 df = get_history_fundamentals(stocklist,[indicator.roe,indicator.inc_total_revenue_year_on_year,indicator.ocf_to_revenue] , watch_date=lastd_date, count=4) # 连续的4个季度 grouped = df.groupby('code') mask = grouped.apply(lambda x: x.isna().any().any()) df = df[~df['code'].isin(mask[mask].index)] grouped = df.groupby('code') result = [] for code, group in grouped: group_sorted = group.sort_values('statDate') roe_values = group_sorted['roe'].values #股本回报率 ocf_values = group_sorted['ocf_to_revenue'].values # 经营现金流/收入 # inc_net_profit_year_on_year = group_sorted['inc_net_profit_year_on_year'].values revenue_growth_values = group_sorted['inc_total_revenue_year_on_year'].values #总收入同比增长率 if ( # (inc_net_profit_year_on_year[-1] > 0 and roe_values[-1] > 0 and ocf_values[-1] >0) (revenue_growth_values[-1] > 0.01 and roe_values[-1] > 0.01 and ocf_values[-1] >0.01) and roe_values[-1] == np.max(roe_values) and ocf_values[-1] == np.max(ocf_values) and # inc_net_profit_year_on_year[-1] == np.max(inc_net_profit_year_on_year) revenue_growth_values[-1] == np.max(revenue_growth_values) # roe_values[-1] == np.min(roe_values) and # ocf_values[-1] == np.min(ocf_values) and # inc_net_profit_year_on_year[-1] == np.min(inc_net_profit_year_on_year) # revenue_growth_values[-1] == np.max(revenue_growth_values) ): result.append(code) return result def weekly_adjustment(context): today = context.current_dt target_list = get_stock_list(context) for stock in g.hold_list: if (stock not in target_list) and (stock not in g.yesterday_HL_list): position = context.portfolio.positions[stock] close_position(position) position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if stock not in list(context.portfolio.positions.keys()): if open_position(stock, value): if len(context.portfolio.positions) == target_num: break def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: # 对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close', 'high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0, 0] < current_data.iloc[0, 1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) def filter_all_stock2(context, stock_list): # 过滤次新股(新股、老股的分界日期,两种指定方法) # 新老股的分界日期, 自然日180天 # by_date = context.previous_date - datetime.timedelta(days=180) # 新老股的分界日期,120个交易日 by_date = get_trade_days(end_date=context.previous_date, count=375)[0] all_stocks = get_all_securities(date=by_date).index.tolist() stock_list = list(set(stock_list).intersection(set(all_stocks))) curr_data = get_current_data() return [stock for stock in stock_list if not ( stock.startswith(( '68', '4', '8','3')) or # 创业,科创,北交所 curr_data[stock].paused or curr_data[stock].is_st or # ST ('ST' in curr_data[stock].name) or ('*' in curr_data[stock].name) or ('退' in curr_data[stock].name) or (curr_data[stock].day_open == curr_data[stock].high_limit) or # 涨停开盘, 其它时间用last_price (curr_data[stock].day_open == curr_data[stock].low_limit) # 跌停开盘, 其它时间用last_price )] def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] ```
文章分类
关于作者
水滴
注册时间: