量化学习平台
文章
市场宽度
背离图
登录
注册
小市值市场轮动版 5年12倍
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/44880 # 标题:5年12倍-小市值 # 作者:道尘 #导入函数库 from jqdata import * from jqfactor import get_factor_values from jqlib.technical_analysis import * import numpy as np import pandas as pd import statsmodels.api as sm import datetime as dt #初始化函数 def initialize(context): # 设定基准 set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 交易量限制 set_option('order_volume_ratio', 1) # 将滑点设置为0,不同滑点影响可在归因分析中查看 set_slippage(PriceRelatedSlippage(0.002),type='stock') # 设置交易成本万一免五 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0001, close_commission=0.0001, close_today_commission=0, min_commission=0.1),type='fund') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #初始化全局变量 g.stock_num = 9 g.limit_up_list = [] #记录持仓中涨停的股票 g.hold_list = [] #当前持仓的全部股票 g.history_hold_list = [] #过去一段时间内持仓过的股票 g.not_buy_again_list = [] #最近买过且涨停过的股票一段时间内不再买入 g.limit_days = 10 #不再买入的时间段天数 g.target_list = [] #开盘前预操作股票池 # 设置交易运行时间 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_weekly(weekly_adjustment, weekday=1, time='9:30', reference_security='000300.XSHG') run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG') #检查持仓中的涨停股是否需要卖出 run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') def after_code_changed(context): unschedule_all() run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_weekly(weekly_adjustment, weekday=1, time='9:30', reference_security='000300.XSHG') run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG') #检查持仓中的涨停股是否需要卖出 run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') #1-1 选股模块 def get_factor_filter_list(context,stock_list,jqfactor,sort,p1,p2): yesterday = context.previous_date score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist() df = pd.DataFrame(columns=['code','score']) df['code'] = stock_list df['score'] = score_list df = df.dropna() df.sort_values(by='score', ascending=sort, inplace=True) filter_list = list(df.code)[int(p1*len(stock_list)):int(p2*len(stock_list))] return filter_list #1-2 选股模块 def get_stock_list(context): yesterday = str(context.previous_date) initial_list = list(set(get_all_securities().index) & set(get_hot_industry_stock(context))) # initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context,initial_list) initial_list = filter_kcb_stock(context, initial_list) initial_list = filter_st_stock(initial_list) #SG 5年营业收入增长率 sg_list = get_factor_filter_list(context, initial_list, 'sales_growth', False, 0, 0.1) q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(sg_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) df = df[df['eps']>0] sg_list = list(df.code) #MS factor_values = get_factor_values(initial_list, [ 'operating_revenue_growth_rate', #营业收入增长率 'total_profit_growth_rate', #利润总额增长率 'net_profit_growth_rate', #净利润增长率 'earnings_growth', #5年盈利增长率 ], end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) df['operating_revenue_growth_rate'] = list(factor_values['operating_revenue_growth_rate'].T.iloc[:,0]) df['total_profit_growth_rate'] = list(factor_values['total_profit_growth_rate'].T.iloc[:,0]) df['net_profit_growth_rate'] = list(factor_values['net_profit_growth_rate'].T.iloc[:,0]) df['earnings_growth'] = list(factor_values['earnings_growth'].T.iloc[:,0]) df['total_score'] = 0.1*df['operating_revenue_growth_rate'] + 0.35*df['total_profit_growth_rate'] + 0.15*df['net_profit_growth_rate'] + 0.4*df['earnings_growth'] df = df.sort_values(by=['total_score'], ascending=False) complex_growth_list = list(df.index)[:int(0.1*len(list(df.index)))] q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(complex_growth_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) df = df[df['eps']>0] ms_list = list(df.code) #PEG peg_list = get_factor_filter_list(context, initial_list, 'PEG', True, 0, 0.2) turnover_list = get_factor_filter_list(context, peg_list, 'turnover_volatility', True, 0, 0.5) q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(turnover_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q, date=yesterday) peg_list = list(df.code) final_list = [sg_list, ms_list, peg_list] return final_list #1-3 准备股票池 def prepare_stock_list(context): yesterday = context.previous_date #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取最近一段时间持有过的股票列表 g.history_hold_list.append(g.hold_list) if len(g.history_hold_list) >= g.limit_days: g.history_hold_list = g.history_hold_list[-g.limit_days:] temp_set = set() for hold_list in g.history_hold_list: for stock in hold_list: temp_set.add(stock) g.not_buy_again_list = list(temp_set) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.high_limit_list = list(df.code) else: g.high_limit_list = [] if len(g.high_limit_list): log.info("昨日涨停:[%s]" % (g.high_limit_list)) ''' # 每日潜池变化提醒 get_stock_prepare_list = get_stock_list(context) sg_list = get_stock_prepare_list[0][:5] ms_list = get_stock_prepare_list[1][:5] peg_list = get_stock_prepare_list[2][:5] union_list = list(set(sg_list).union(set(ms_list)).union(set(peg_list))) q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(union_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) get_prepare_list = list(df.code) for stock in get_prepare_list: stock_market_cap = get_factor_values(stock,'circulating_market_cap', end_date=yesterday, count=1)['circulating_market_cap'].iloc[0] stock_name = get_security_info(stock, date=yesterday).display_name log.info("潜力股:%s,代码:%s,流通市值:%f" ,stock_name, stock, stock_market_cap/100_000_000) ''' #1-5 整体调整持仓 def weekly_adjustment(context): #1 #获取应买入列表 all_list = get_stock_list(context) sg_list = all_list[0][:5] ms_list = all_list[1][:5] peg_list = all_list[2][:5] union_list = list(set(sg_list).union(set(ms_list)).union(set(peg_list))) q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(union_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) g.target_list = list(df.code) #...2 g.target_list = filter_paused_stock(g.target_list) g.target_list = filter_limitup_stock(context, g.target_list) g.target_list = filter_limitdown_stock(context, g.target_list) #过滤最近买过且涨停过的股票 recent_limit_up_list = get_recent_limit_up_stock(context, g.target_list, g.limit_days) black_list = list(set(g.not_buy_again_list).intersection(set(recent_limit_up_list))) g.target_list = [stock for stock in g.target_list if stock not in black_list] #截取不超过最大持仓数的股票量 g.target_list = g.target_list[:min(g.stock_num, len(g.target_list))] #调仓卖出 for stock in g.hold_list: if (stock not in g.target_list) and (stock not in g.high_limit_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(g.target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in g.target_list: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == target_num: break #1-6 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.high_limit_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.high_limit_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 获取最近N个交易日内有涨停的股票 def get_recent_limit_up_stock(context, stock_list, recent_days): stat_date = context.previous_date new_list = [] for stock in stock_list: df = get_price(stock, end_date=stat_date, frequency='daily', fields=['close','high_limit'], count=recent_days, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] if len(df) > 0: new_list.append(stock) return new_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤科创板 def filter_kcb_stock(context, stock_list): return [stock for stock in stock_list if stock[0:3] != '688'] #2-7 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=375)] # 2-8 筛选热门行业成分股 def get_hot_industry_stock(context, count=10, number=24): end_date = context.previous_date by_date = get_trade_days(end_date=end_date,count=count+20)[0] stock_list = get_all_securities(date=by_date).index.tolist() # count+20个交易日之前就已经上市的 df_close = get_price(stock_list,end_date=end_date, count=count+20, fields='close', panel=False).pivot(index='time', values='close', columns='code') df_bias = df_close.iloc[20:] > df_close.rolling(20).mean().iloc[20:] # C > MA20 df_industries = get_industries('sw_l1', date=end_date) df_industries['code'] = list(df_industries.index) df=pd.DataFrame() columns = set(df_bias.columns) for idx, row in df_industries.iterrows(): ind_stocks = set(get_industry_stocks(idx, date=end_date)) # 行业成分股 ind_avail_stocks = list(columns & ind_stocks) # 成分股 在df_bias表中存在的 if ind_avail_stocks: # 计算该行业成分股C>MA20的百分比,技巧:df_bias[ind_avail_stocks] df[row['code']] = (100*(df_bias[ind_avail_stocks].sum(axis=1))/len(ind_avail_stocks)).astype(int) df.sort_index(ascending=False, inplace=True) sr = df.iloc[0:count,:].mean().sort_values(ascending=False, inplace=False) sr = list(sr[0:number].index) stocks_set = set() for s in sr: ind_stocks = set(get_industry_stocks(s, date=end_date)) stocks_set.update(ind_stocks) # get_industry_stocks(sr, date=end_date) return list(stocks_set) #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #3-4 交易模块-调仓 def adjust_position(context, buy_stocks, stock_num): for stock in context.portfolio.positions: if stock not in buy_stocks: log.info("[%s]不在应买入列表中" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]已经持有无需重复买入" % (stock)) position_count = len(context.portfolio.positions) if stock_num > position_count: value = context.portfolio.cash / (stock_num - position_count) for stock in buy_stocks: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == g.stock_num: break #4-1 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: