量化学习平台
文章
市场宽度
背离图
登录
注册
5年15倍的收益,年化79.93%,可实盘,拿走不谢!
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/45510 # 标题:5年15倍的收益,年化79.93%,可实盘,拿走不谢! # 作者:langcheng999 # 原回测条件:2019-01-01 到 2023-11-30, ¥100000, 每天 import pandas as pd from jqdata import * from jqfactor import get_factor_values import redis import json def initialize(context): # setting # 设置日志级别为error log.set_level('order', 'error') # 开启动态复权模式(真实价格) set_option('use_real_price', True) # 设置是否开启避免未来数据模式 set_option('avoid_future_data', True) # 设置基准 set_benchmark('000300.XSHG') # 设置滑点 set_slippage(FixedSlippage(0.02)) # 设置交易成本 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund') # strategy #初始化全局变量 g.no_trading_today_signal = False g.stock_num = 10 # 持股数量 g.choice = [] # 股票池 g.just_sold = [] # just_sold标记本月涨停过的 g.limit_days = 30 # 限制天数N天 g.hold_list = [] # 已持有股票列表 g.history_hold_list = [] # 存放N天持有过的股票,二维数组 g.not_buy_again_list = [] # N天买过的股票,不再买入的黑名单,一维数组 # 准备昨日涨停且正在持有的股票列表 run_daily(prepare_high_limit_list, time='9:05', reference_security='000300.XSHG') # 每天调整昨日涨停股票 run_daily(check_limit_up, time='14:00') # 每月选股 run_monthly(my_Trader, -1 ,time='9:30', force=True) # 每月调仓一次 run_monthly(go_Trader, -1 ,time='14:55', force=True) # 是否是4月份,是则清仓 run_daily(close_account, '14:30') # 收盘后运行 # run_daily(after_market_close, time='after_close', reference_security='000300.XSHG') # 每月选股 def my_Trader(context): #1 all stocks dt_last = context.previous_date stocks = get_all_securities('stock', dt_last).index.tolist() stocks = filter_kcbj_stock(stocks) #2 股息率筛选排序 # stocks = get_dividend_ratio_filter_list(context, stocks, False, 0, 0.25) # stocks = get_factor_filter_list(context, stocks, 'ROAEBITTTM', False, 0, 0.2) #4 各种过滤 choice = filter_st_stock(stocks) choice = filter_paused_stock(choice) choice = filter_new_stock(context, choice) choice = filter_limitup_stock(context,choice) choice = filter_limitdown_stock(context,choice) #5 低价股 choice = filter_highprice_stock(context,choice) #3 基本面筛选,并根据小市值排序 choice = get_peg(context,choice) #过滤最近买过且涨停过的股票 recent_limit_up_list = get_recent_limit_up_stock(context, choice, g.limit_days) # black_list = list((set(g.not_buy_again_list).intersection(set(recent_limit_up_list))).union(set(g.just_sold))) black_list = list(set(g.not_buy_again_list).intersection(set(recent_limit_up_list))) target_list = [stock for stock in choice if stock not in black_list] log.info('过滤完黑名单的数量', len(target_list)) #截取不超过最大持仓数的股票量 choice = target_list[:min(g.stock_num, len(target_list))] g.choice = choice[:g.stock_num] #1-1 选股模块 def get_factor_filter_list(context,stock_list,jqfactor,sort,p1,p2): yesterday = context.previous_date score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist() df = pd.DataFrame(columns=['code','score']) df['code'] = stock_list df['score'] = score_list df = df.dropna() df.sort_values(by='score', ascending=sort, inplace=True) filter_list = list(df.code)[int(p1*len(df)):int(p2*len(df))] return filter_list # 每月调仓一次 def go_Trader(context): if g.no_trading_today_signal == False: # g.just_sold = [] #每月清零一次 g.just_sold 防止其中内容一直膨胀 cdata = get_current_data() choice = g.choice # Sell,仍在选出的股票池中,则不卖 for s in context.portfolio.positions: if (s not in choice and (not cdata[s].paused)) : log.info('Sell', s, cdata[s].name) order_target(s, 0) g.just_sold.append(s) if len(g.just_sold) >= g.limit_days: g.just_sold = g.just_sold[-g.stock_num:] # buy,根据资金买入相应的金额 position_count = len(context.portfolio.positions) if g.stock_num > position_count: psize = context.portfolio.available_cash/(g.stock_num - position_count) for s in choice: if s not in context.portfolio.positions: log.info('buy', s, cdata[s].name) order = order_value(s, psize) if len(context.portfolio.positions) == g.stock_num: break # 没用到此函数 def cap(context): current_data = get_current_data() #获取日期 hold_stocks = context.portfolio.positions.keys() for s in hold_stocks: q = query(valuation).filter(valuation.code == s) df = get_fundamentals(q) # log.info(s,current_data[s].name,'流值',df['circulating_market_cap'][0],'亿') log.info(s,current_data[s].name,'市值',df['market_cap'][0],'亿') log.info(s,current_data[s].name,'股价',current_data[s].last_price,'元') #2-3 获取最近N个交易日内有涨停的股票 def get_recent_limit_up_stock(context, stock_list, recent_days): stat_date = context.previous_date new_list = [] for stock in stock_list: df = get_price(stock, end_date=stat_date, frequency='daily', fields=['close','high_limit'], count=recent_days, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] if len(df) > 0: new_list.append(stock) return new_list # 基本面筛选,并根据小市值排序 def get_peg(context,stocks): # 获取基本面数据 q = query(valuation.code, valuation.pe_ratio, indicator.inc_net_profit_year_on_year, valuation.pe_ratio / indicator.inc_net_profit_year_on_year,# PEG indicator.roe / valuation.pb_ratio, # 收益率指标:ROE/PB特别适合于周期类、成长性一般企业的估值分析 indicator.roe, indicator.roa, valuation.pb_ratio ).filter( # valuation.pe_ratio > 0, # indicator.inc_net_profit_year_on_year > 0, # valuation.pe_ratio / indicator.inc_net_profit_year_on_year<1, # valuation.pb_ratio < 3, # indicator.roe / valuation.pb_ratio > 3.2, #国债收益率 indicator.roe > 0.15, indicator.roa > 0.10, valuation.code.in_(stocks)) df_fundamentals = get_fundamentals(q, date = None) stocks = list(df_fundamentals.code) # fuandamental data df = get_fundamentals(query(valuation.code).filter(valuation.code.in_(stocks)).order_by(valuation.market_cap.asc())) choice = list(df.code) return choice #1-1 根据最近一年分红除以当前总市值计算股息率并筛选排序 def get_dividend_ratio_filter_list(context, stock_list, sort, p1, p2): time1 = context.previous_date time0 = time1 - datetime.timedelta(days=365) #获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合 interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000 list_len = len(stock_list) #截取不超过interval的列表并查询 q = query( finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)])) df = finance.run_query(q) #对interval的部分分别查询并拼接 if list_len > interval: df_num = list_len // interval for i in range(df_num): q = query( finance.STK_XR_XD.code, finance.STK_XR_XD.a_registration_date, finance.STK_XR_XD.bonus_amount_rmb ).filter( finance.STK_XR_XD.a_registration_date >= time0, finance.STK_XR_XD.a_registration_date <= time1, finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))])) temp_df = finance.run_query(q) df = df.append(temp_df) dividend = df.fillna(0) dividend = dividend.set_index('code') dividend = dividend.groupby('code').sum() temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list #获取市值相关数据 q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list)) cap = get_fundamentals(q, date=time1) cap = cap.set_index('code') #计算股息率 DR = pd.concat([dividend, cap] ,axis=1, sort=False) DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap'] #排序并筛选 DR = DR.sort_values(by=['dividend_ratio'], ascending=sort) final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))] return final_list # 准备昨日涨停且正在持有的股票列表 def prepare_high_limit_list(context): # 昨日涨停列表 g.high_limit_list = [] #获取已持有列表 hold_list = list(context.portfolio.positions) if hold_list: df = get_price(hold_list, end_date=context.previous_date, frequency='daily', fields=['close', 'high_limit'], count=1, panel=False) g.high_limit_list = df[df['close'] == df['high_limit']]['code'].tolist() #判断今天是否为账户资金再平衡的日期,空仓期一个月 g.no_trading_today_signal = False # g.no_trading_today_signal = today_is_between(context, '04-01', '04-30') #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取最近一段时间持有过的股票列表 g.history_hold_list.append(g.hold_list) if len(g.history_hold_list) >= g.limit_days: g.history_hold_list = g.history_hold_list[-g.limit_days:] temp_set = set() for hold_list in g.history_hold_list: for stock in hold_list: temp_set.add(stock) g.not_buy_again_list = list(temp_set) # 调整昨日涨停股票 def check_limit_up(context): if g.no_trading_today_signal == False: # 获取持仓的昨日涨停列表 current_data = get_current_data() if g.high_limit_list: for stock in g.high_limit_list: # 涨停的票,涨不动了就卖掉 if current_data[stock].last_price < current_data[stock].high_limit: order_target(stock, 0) log.info("[%s]涨停打开,卖出" % stock) # just_sold标记本月涨停过的 g.just_sold.append(stock) if len(g.just_sold) >= g.limit_days: g.just_sold = g.just_sold[-g.stock_num:] else: log.info("[%s]涨停,继续持有" % stock) position_count = len(context.portfolio.positions) # 当持有股票数量不足时: if g.stock_num > position_count and position_count != 0: # position_count != 0 用于避免第一次运行时代替go_trader 买入 my_Trader(context) # 每月的选股逻辑,计算 g.choice cdata = get_current_data() psize = context.portfolio.available_cash/(g.stock_num - position_count) for s in g.choice: if s not in context.portfolio.positions: order = order_value(s, psize) if len(context.portfolio.positions) == g.stock_num: break # 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list # 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] # 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)] # 过滤涨幅过大的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit*0.97] # 过滤跌幅过大的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit*1.04] #2-4 过滤股价高于10元的股票 def filter_highprice_stock(context,stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < 10] def after_market_close(context): log.info(str(context.current_dt)) #4-2 如果no_trading_today_signal为True,则清仓 def close_account(context): if g.no_trading_today_signal == True: position_count = context.portfolio.positions if len(position_count) != 0: for stock in position_count: position = context.portfolio.positions[stock] close_position(position) log.info("卖出[%s]" % (stock)) #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-1 判断今天是否为账户资金再平衡的日期 def today_is_between(context, start_date, end_date): today = context.current_dt.strftime('%m-%d') if (start_date <= today) and (today <= end_date): return True else: return False # end ```
文章分类
关于作者
水滴
注册时间: