量化学习平台
文章
市场宽度
背离图
登录
注册
冷饭热吃之三,14年至今年华99.99%
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47527 # 标题:冷饭热吃之三,14年至今年华99.99% # 作者:韶华不负 # 原回测条件:2014-01-01 到 2024-04-07, ¥100000, 每天 # 原文网址:https://www.joinquant.com/post/47454 # 标题:策略年化收益 94.81%,最大回撤 33.50% # 作者:李精荠 """ 策略逻辑, 1,周二1030(最OK)盘前选股(市值升序),7>10=5只 2,有4月空仓(加1月空仓) 3,2点有破板卖出 4,10点有止损卖出(中小指日跌幅6点,单票12点止损,最佳) """ #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd from datetime import time #import datetime #初始化函数 def initialize(context): # 开启防未来函数 set_option('avoid_future_data', True) # 设定基准 set_benchmark('000001.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 将滑点设置为0 set_slippage(FixedSlippage(3/10000)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=2.5/10000, close_commission=2.5/10000, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') log.set_level('system', 'error') log.set_level('strategy', 'debug') #初始化全局变量 bool g.no_trading_today_signal = False # 是否为可交易日 g.pass_april = True # 是否四月空仓 g.run_stoploss = True # 是否进行止损 #全局变量list g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.target_list = [] g.not_buy_again = [] #全局变量float/strs g.stock_num = 7 #g.m_days = 7 #取值参考天数,未生效 g.up_price = 100 # 设置股票单价 g.reason_to_sell = '' g.stoploss_strategy = 3 # 1为止损线止损,2为市场趋势止损, 3为联合1、2策略 g.stoploss_limit = 0.88 # 止损线 g.stoploss_market = 0.94 # 市场趋势止损参数 g.HV_control = False #新增,Ture是日频判断是否放量,False则不然 g.HV_duration = 120 #HV_control用,周期可以是240-120-60,默认比例是0.9 g.HV_ratio = 0.9 #HV_control用 # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_weekly(weekly_adjustment,2,'10:30') run_daily(sell_stocks, time='10:00') # 止损函数 run_daily(trade_afternoon, time='14:30') #检查持仓中的涨停股是否需要卖出 run_daily(close_account, '14:50') run_weekly(print_position_info, 5, time='15:10') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit','low_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #判断今天是否为账户资金再平衡的日期 g.no_trading_today_signal = today_is_between(context) #1-2 选股模块 def get_stock_list(context): final_list = [] MKT_index = '399101.XSHE' initial_list = get_index_stocks(MKT_index) initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) initial_list = filter_paused_stock(initial_list) initial_list = filter_limitup_stock(context, initial_list) initial_list = filter_limitdown_stock(context, initial_list) q = query(valuation.code,indicator.eps).filter(valuation.code.in_(initial_list)).order_by(valuation.market_cap.asc()) df = get_fundamentals(q) stock_list = list(df.code) stock_list = stock_list[:100] final_list = stock_list[:2*g.stock_num] log.info('今日前10:%s' % final_list) """ initial_list = list(df_fun.code) initial_list = filter_paused_stock(initial_list) initial_list = filter_limitup_stock(context, initial_list) initial_list = filter_limitdown_stock(context, initial_list) #print('initial_list中含有{}个元素'.format(len(initial_list))) q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(initial_list)).order_by(valuation.market_cap.asc()) df_fun = get_fundamentals(q) df_fun = df_fun[:50] final_list = list(df_fun.code) """ return final_list #1-3 整体调整持仓 def weekly_adjustment(context): if g.no_trading_today_signal == False: #获取应买入列表 g.not_buy_again = [] g.target_list = get_stock_list(context) """ target_list = filter_not_buy_again(g.target_list) target_list = filter_paused_stock(target_list) target_list = filter_limitup_stock(context, target_list) target_list = filter_limitdown_stock(context, target_list) target_list = filter_highprice_stock(context, target_list) """ target_list = g.target_list[:g.stock_num] log.info(str(target_list)) #print(day_of_week) #print(type(day_of_week)) #调仓卖出 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.yesterday_HL_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 buy_security(context,target_list) #记录已买入股票 for position in list(context.portfolio.positions.values()): stock = position.security g.not_buy_again.append(stock) #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) g.reason_to_sell = 'limitup' else: log.info("[%s]涨停,继续持有" % (stock)) #1-5 如果昨天有股票卖出或者买入失败,剩余的金额今天早上买入 def check_remain_amount(context): if g.reason_to_sell is 'limitup': #判断提前售出原因,如果是涨停售出则次日再次交易,如果是止损售出则不交易 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) if len(g.hold_list) < g.stock_num: target_list = g.target_list #剔除本周一曾买入的股票,不再买入 target_list = filter_not_buy_again(target_list) target_list = target_list[:min(g.stock_num, len(target_list))] log.info('有余额可用'+str(round((context.portfolio.cash),2))+'元。'+ str(target_list)) buy_security(context,target_list) g.reason_to_sell = '' else: log.info('虽然有余额可用,但是为止损后余额,下周再交易') g.reason_to_sell = '' #1-6 下午检查交易 def trade_afternoon(context): if g.no_trading_today_signal == False: check_limit_up(context) if g.HV_control == True: check_high_volume(context) check_remain_amount(context) #1-7 止盈止损 def sell_stocks(context): if g.run_stoploss == True: if g.stoploss_strategy == 1: for stock in context.portfolio.positions.keys(): # 股票盈利大于等于100%则卖出 if context.portfolio.positions[stock].price >= context.portfolio.positions[stock].avg_cost * 2: order_target_value(stock, 0) log.debug("收益100%止盈,卖出{}".format(stock)) # 止损 elif context.portfolio.positions[stock].price < context.portfolio.positions[stock].avg_cost * g.stoploss_limit: order_target_value(stock, 0) log.debug("收益止损,卖出{}".format(stock)) g.reason_to_sell = 'stoploss' elif g.stoploss_strategy == 2: stock_df = get_price(security=get_index_stocks('399101.XSHE'), end_date=context.previous_date, frequency='daily', fields=['close', 'open'], count=1,panel=False) #down_ratio = (stock_df['close'] / stock_df['open'] < 1).sum() / len(stock_df) #down_ratio = abs((stock_df['close'] / stock_df['open'] - 1).mean()) down_ratio = (stock_df['close'] / stock_df['open']).mean() if down_ratio <= g.stoploss_market: g.reason_to_sell = 'stoploss' log.debug("大盘惨跌,平均降幅{:.2%}".format(down_ratio)) for stock in context.portfolio.positions.keys(): order_target_value(stock, 0) elif g.stoploss_strategy == 3: stock_df = get_price(security=get_index_stocks('399101.XSHE'), end_date=context.previous_date, frequency='daily', fields=['close', 'open'], count=1,panel=False) #down_ratio = abs((stock_df['close'] / stock_df['open'] - 1).mean()) down_ratio = (stock_df['close'] / stock_df['open']).mean() if down_ratio <= g.stoploss_market: g.reason_to_sell = 'stoploss' log.debug("大盘惨跌,平均降幅{:.2%}".format(down_ratio)) for stock in context.portfolio.positions.keys(): order_target_value(stock, 0) else: for stock in context.portfolio.positions.keys(): if context.portfolio.positions[stock].price < context.portfolio.positions[stock].avg_cost * g.stoploss_limit: order_target_value(stock, 0) log.debug("收益止损,卖出{}".format(stock)) g.reason_to_sell = 'stoploss' # 3-2 调整放量股票 def check_high_volume(context): current_data = get_current_data() for stock in context.portfolio.positions: if current_data[stock].paused == True: continue if current_data[stock].last_price == current_data[stock].high_limit: continue if context.portfolio.positions[stock].closeable_amount ==0: continue df_volume = get_bars(stock,count=g.HV_duration,unit='1d',fields=['volume'],include_now=True, df=True) if df_volume['volume'].values[-1] > g.HV_ratio*df_volume['volume'].values.max(): log.info("[%s]天量,卖出" % stock) position = context.portfolio.positions[stock] close_position(position) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=375)] #2-6.5 过滤股价 def filter_highprice_stock(context,stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] <= g.up_price] #2-7 删除本周一买入的股票 def filter_not_buy_again(stock_list): return [stock for stock in stock_list if stock not in g.not_buy_again] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: pass #log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #3-4 买入模块 def buy_security(context,target_list): #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: #if stock not in context.portfolio.positions: if open_position(stock, value): log.info("买入[%s](%s元)" % (stock,value)) g.not_buy_again.append(stock) #持仓清单,后续不希望再买入 if len(context.portfolio.positions) == target_num: break #4-1 判断今天是否为四月 def today_is_between(context): today = context.current_dt.strftime('%m-%d') if g.pass_april is True: if (('04-01' <= today) and (today <= '04-30')) or (('01-01' <= today) and (today <= '01-30')): return True else: return False else: return False #4-2 清仓后次日资金可转 def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: position = context.portfolio.positions[stock] close_position(position) log.info("卖出[%s]" % (stock)) def print_position_info(context): for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: