量化学习平台
文章
市场宽度
背离图
登录
注册
ETF动量轮动RSRS择时-魔改3小优化
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/35279 # 标题:ETF动量轮动RSRS择时-魔改3小优化 # 作者:莫急莫急 # 需要设置按 分钟 运行 from jqdata import * import numpy as np #初始化函数 def initialize(context): set_benchmark('000300.XSHG') set_option('use_real_price', True) set_option("avoid_future_data", True) set_slippage(FixedSlippage(0.001)) set_order_cost(OrderCost(open_tax=0, close_tax=0, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5), type='fund') log.set_level('order', 'error') g.stock_pool = [ '510050.XSHG', # 上证50ETF '159928.XSHE', # 中证消费ETF '510300.XSHG', # 沪深300ETF '159949.XSHE', # 创业板50ETF ] # 备选池:用流动性和市值更大的50ETF分别代替宽指ETF,500与300ETF保留一个 g.stock_num = 1 #买入评分最高的前stock_num只股票 g.momentum_day = 20 #最新动量参考最近momentum_day的 g.ref_stock = '000300.XSHG' #用ref_stock做择时计算的基础数据 g.N = 18 # 计算最新斜率slope,拟合度r2参考最近N天 g.M = 600 # 计算最新标准分zscore,rsrs_score参考最近M天 g.score_threshold = 0.7 # rsrs标准分指标阈值 g.mean_day = 30 #计算结束ma收盘价,参考最近mean_day g.mean_diff_day = 2 #计算初始ma收盘价,参考(mean_day + mean_diff_day)天前,窗口为mean_diff_day的一段时间 g.slope_series = initial_slope_series()[:-1] # 除去回测第一天的slope,避免运行时重复加入 run_daily(my_trade, time='9:30', reference_security='000300.XSHG') run_daily(check_lose, time='open', reference_security='000300.XSHG') run_daily(print_trade_info, time='15:30', reference_security='000300.XSHG') # 20日收益率动量拟合取斜率最大的 def get_rank(context,stock_pool): rank = [] for stock in g.stock_pool: data = attribute_history(stock, g.momentum_day, '1d', ['close']) # 下面这句是为了测试get_price的未来函数功能,在当前日期的基础上减去一天,与attribute_history的数据一样 # data = get_price(stock, end_date=context.current_dt-datetime.timedelta(1), count=g.momentum_day,fields=['close']) score = np.polyfit(np.arange(len(data)),data.close/data.close[0],1)[0] rank.append([stock, score]) rank.sort(key=lambda x: x[-1],reverse=True) log.info(data.tail(3)) return rank[0] # 这里求R2的式子有点问题,但是这个效果更好,原因未找到! def get_ols(x, y): slope, intercept = np.polyfit(x, y, 1) r2 = 1 - (sum((y - (slope * x + intercept))**2) / ((len(y) - 1) * np.var(y, ddof=1))) return (intercept, slope, r2) def initial_slope_series(): data = attribute_history(g.ref_stock, g.N + g.M, '1d', ['high', 'low']) return [get_ols(data.low[i:i+g.N], data.high[i:i+g.N])[1] for i in range(g.M)] # 因子标准化 def get_zscore(slope_series): mean = np.mean(slope_series) std = np.std(slope_series) return (slope_series[-1] - mean) / std # 只看RSRS因子值作为买入、持有和清仓依据,前版本还加入了移动均线的上行作为条件 def get_timing_signal(context,stock): g.mean_diff_day = 5 close_data = attribute_history(g.ref_stock, g.mean_day + g.mean_diff_day, '1d', ['close']) high_low_data = attribute_history(g.ref_stock, g.N, '1d', ['high', 'low']) # 这两句同上面的功能相同,愿意测试的可以试试,与avoid_future_data相互矛盾,只能取二者中的一个 # close_data = get_price(g.ref_stock, end_date=context.current_dt-datetime.timedelta(1),count=g.mean_day + g.mean_diff_day,fields=['close']) # high_low_data = get_price(g.ref_stock, end_date=context.current_dt-datetime.timedelta(1),count=g.N, fields=['high', 'low']) intercept, slope, r2 = get_ols(high_low_data.low, high_low_data.high) g.slope_series.append(slope) rsrs_score = get_zscore(g.slope_series[-g.M:]) * r2 if rsrs_score > g.score_threshold: return "BUY" elif rsrs_score < -g.score_threshold: return "SELL" else: return "KEEP" #4-1 交易模块-自定义下单 #报单成功返回报单(不代表一定会成交),否则返回None,应用于 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) # 如果股票停牌,创建报单会失败,order_target_value 返回None # 如果股票涨跌停,创建报单会成功,order_target_value 返回Order,但是报单会取消 # 部成部撤的报单,聚宽状态是已撤,此时成交量>0,可通过成交量判断是否有成交 return order_target_value(security, value) #4-2 交易模块-开仓 #买入指定价值的证券,报单成功并成交(包括全部成交或部分成交,此时成交量大于0)返回True,报单失败或者报单成功但被取消(此时成交量等于0),返回False def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #4-3 交易模块-平仓 #卖出指定持仓,报单成功并全部成交返回True,报单失败或者报单成功但被取消(此时成交量等于0),或者报单非全部成交,返回False def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False def adjust_position(context, buy_stocks): for stock in context.portfolio.positions: if stock not in buy_stocks: log.info("[%s]已不在应买入列表中" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]已经持有无需重复买入" % (stock)) position_count = len(context.portfolio.positions) if g.stock_num > position_count: value = context.portfolio.cash / (g.stock_num - position_count) for stock in buy_stocks: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == g.stock_num: break # 交易主函数,先确定ETF最强的是谁,然后再根据择时信号判断是否需要切换或者清仓 def my_trade(context): hour = context.current_dt.hour minute = context.current_dt.minute if hour == 9 and minute == 30: # :30开盘时买入(标的根据昨天之前的数据算出来) check_out_list = get_rank(context,g.stock_pool) timing_signal = get_timing_signal(context,g.ref_stock) print('今日自选及择时信号:{} {}'.format(check_out_list,timing_signal)) if timing_signal == 'SELL': for stock in context.portfolio.positions: position = context.portfolio.positions[stock] close_position(position) elif timing_signal == 'BUY' or timing_signal == 'KEEP': adjust_position(context, check_out_list) else: pass # 这个函数几乎没用 def check_lose(context): for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount #这里设定80%止损几乎等同不止损,因为止损在指数etf策略中影响不大 if ret <=-90: order_target_value(position.security, 0) print("!!!!!!触发止损信号: 标的={},标的价值={},浮动盈亏={}% !!!!!!" .format(securities,format(value,'.2f'),format(ret,'.2f'))) def print_trade_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: