量化学习平台
文章
市场宽度
背离图
登录
注册
大容量低回撤价值投资-排除小市值因子
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/47566 # 标题:大容量低回撤价值投资-排除小市值因子 # 作者:Ahfu # 原回测条件:2014-04-09 到 2024-04-09, ¥10000000, 每天 #导入函数库 from jqdata import * from jqfactor import get_factor_values from jqlib.technical_analysis import * import numpy as np import pandas as pd import statsmodels.api as sm import datetime as dt from sklearn.preprocessing import MinMaxScaler #初始化函数 def initialize(context): # 设定基准 set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之1.2,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.00012, close_commission=0.00012, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') log.set_level('system', 'error') #初始化全局变量 g.stock_num = 40 g.limit_up_list = [] #记录持仓中涨停的股票 g.hold_list = [] #当前持仓的全部股票 g.history_hold_list = [] #过去一段时间内持仓过的股票 g.not_buy_again_list = [] #最近买过且涨停过的股票一段时间内不再买入 g.limit_days = 20 #不再买入的时间段天数 g.target_list = [] #开盘前预操作股票池 # 设置交易运行时间 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') run_monthly(adjust_position, 1, time='9:30', reference_security='000300.XSHG') run_daily(check_limit_up, time='14:00', reference_security='000300.XSHG') #检查持仓中的涨停股是否需要卖出 run_monthly(print_position_info, 1, time='15:10', reference_security='000300.XSHG') #1-2 选股模块 def get_stock_list(context): yesterday = str(context.previous_date) end_date = context.previous_date last_days = end_date - timedelta(days=300) securities_df = get_all_securities(date=last_days) initial_list = securities_df.index.tolist() factor_values = get_factor_values(initial_list, [ 'roic_ttm', #投资资本回报率TTMv 'gross_income_ratio', #销售毛利率 'sales_to_price_ratio', #营收市值比 1 / ps_ratio (ttm) 'Variance120', #120日年化收益方差 ], end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) df['roic_ttm'] = list(factor_values['roic_ttm'].T.iloc[:,0]) df['gross_income_ratio'] = list(factor_values['gross_income_ratio'].T.iloc[:,0]) df['sales_to_price_ratio'] = list(1/factor_values['sales_to_price_ratio'].T.iloc[:,0]) df['Variance120'] = list(factor_values['Variance120'].T.iloc[:,0]) df = df.dropna() # 归一化所有列 scaler = MinMaxScaler() df2 = pd.DataFrame(scaler.fit_transform(df), columns=df.columns, index=df.index) df2['total_score'] = df2['roic_ttm'] + df2['gross_income_ratio'] - df2['sales_to_price_ratio'] - df2['Variance120'] df2 = df2.sort_values(by=['total_score'], ascending=False) ms_list = list(df2.index) return ms_list #1-3 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取最近一段时间持有过的股票列表 g.history_hold_list.append(g.hold_list) if len(g.history_hold_list) >= g.limit_days: g.history_hold_list = g.history_hold_list[-g.limit_days:] temp_set = set() for hold_list in g.history_hold_list: for stock in hold_list: temp_set.add(stock) g.not_buy_again_list = list(temp_set) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.high_limit_list = list(df.code) else: g.high_limit_list = [] #1-5 整体调整持仓 def adjust_position(context): if context.previous_date.month not in [1,4,7,10]: return # 获取应买入列表 g.target_list = get_stock_list(context) #截取不超过最大持仓数的股票量 g.target_list = g.target_list[:min(g.stock_num, len(g.target_list))] #调仓卖出 for stock in g.hold_list: if (stock not in g.target_list) and (stock not in g.high_limit_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(g.target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in g.target_list: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == target_num: break #1-6 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.high_limit_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.high_limit_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-1 打印每日持仓信息 def print_position_info(context): c = get_current_data() positions_dict = context.portfolio.positions for position in list(positions_dict.values()): log.info("当前持仓:{0}:{1}, 市值:{2}, 盈利:{3}%, 建仓时间:{4}".format(c[position.security].name, position.security[:6], round(position.value,0), round((position.value-(position.avg_cost*position.total_amount))/(position.avg_cost*position.total_amount)*100,1), position.init_time)) log.info('#########################################################################################\n\n') ```
文章分类
关于作者
水滴
注册时间: