量化学习平台
文章
市场宽度
背离图
登录
注册
多因子线性回归组合策略
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/42371 # 标题:凑波热闹,也来试试多因子线性回归 # 作者:Plisking # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/42310 # 标题:wywy大佬的差不多得了策略三只股最优版 # 作者:chalengr4 #https://www.joinquant.com/view/community/detail/30684f8d65a74eef0d704239f0eec8be?type=1&page=2 #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd #初始化函数 def initialize(context): # 设定基准 set_benchmark('000905.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #初始化全局变量 g.no_trading_today_signal = False g.stock_num = 1 g.hold_list = [] #当前持仓的全部股票 g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.factor_list = [ (#ARBR-SGAI-NPtTORttm-RPps [ 'ARBR', #情绪类因子 ARBR 'SGAI', #质量类因子 销售管理费用指数 'net_profit_to_total_operate_revenue_ttm', #质量类因子 净利润与营业总收入之比 'retained_profit_per_share' #每股指标因子 每股未分配利润 ], [ -0.00015399364219672028, 0.0068040696770965275, -0.013582394749579795, -0.05043296392026463 ] ), (#P1Y-TPtCR-VOL120 [ 'Price1Y', #动量类因子 当前股价除以过去一年股价均值再减1 'total_profit_to_cost_ratio', #质量类因子 成本费用利润率 'VOL120' #情绪类因子 120日平均换手率 ], [ -1.6481969388084845, -0.17062057099935446, -0.061842557079243125 ] ), (#DtA-OCtORR-DAVOL20-PNF-SG [ 'debt_to_assets', #风格因子 资产负债率 'operating_cost_to_operating_revenue_ratio', #质量类因子 销售成本率 'DAVOL20', #情绪类因子 20日平均换手率与120日平均换手率之比 'price_no_fq', #技术指标因子 不复权价格因子 'sales_growth' #风格因子 5年营业收入增长率 ], [ 0.058175841938529524, -0.1910332189773409, -0.2736912625714264, -0.027468330345688075, 0.11887746662741136 ] ) ] # g.factor_list = [ # (#ARBR-SGAI-NPtTORttm-RPps # [ # 'ARBR', #情绪类因子 ARBR # 'SGAI', #质量类因子 销售管理费用指数 # 'net_profit_to_total_operate_revenue_ttm', #质量类因子 净利润与营业总收入之比 # 'retained_profit_per_share' #每股指标因子 每股未分配利润 # ], # [ # -2.3425, # -694.7936, # -170.0463, # -1362.5762 # ] # ), # (#P1Y-TPtCR-VOL120 # [ # 'Price1Y', #动量类因子 当前股价除以过去一年股价均值再减1 # 'total_profit_to_cost_ratio', #质量类因子 成本费用利润率 # 'VOL120' #情绪类因子 120日平均换手率 # ], # [ # -0.0647128120839873, # -0.006385116279168804, # -0.0029867925845833217 # ] # ), # (#DtA-OCtORR-DAVOL20-PNF-SG # [ # 'debt_to_assets', #风格因子 资产负债率 # 'operating_cost_to_operating_revenue_ratio', #质量类因子 销售成本率 # 'DAVOL20', #情绪类因子 20日平均换手率与120日平均换手率之比 # 'price_no_fq', #技术指标因子 不复权价格因子 # 'sales_growth' #风格因子 5年营业收入增长率 # ], # [ # 0.04477354820057883, # 0.021636407482421707, # -0.01864268317469762, # -0.0004678118383947827, # 0.02884867440332058 # ] # ) # ] # 设置交易运行时间 run_daily(prepare_stock_list, '9:05') run_weekly(weekly_adjustment, 1, '9:30') run_daily(check_limit_up, '14:00') #检查持仓中的涨停股是否需要卖出 run_daily(close_account, '14:30') run_daily(print_position_info, '15:10') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #判断今天是否为账户资金再平衡的日期 g.no_trading_today_signal = today_is_between(context, '04-05', '04-30') #1-2 选股模块 def get_stock_list(context): #指定日期防止未来数据 yesterday = context.previous_date today = context.current_dt #获取初始列表 initial_list = get_all_securities('stock', today).index.tolist() initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) final_list = [] #MS for factor_list,coef_list in g.factor_list: factor_values = get_factor_values(initial_list,factor_list, end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) for i in range(len(factor_list)): df[factor_list[i]] = list(factor_values[factor_list[i]].T.iloc[:,0]) df = df.dropna() df['total_score'] = 0 for i in range(len(factor_list)): df['total_score'] += coef_list[i]*df[factor_list[i]] df = df.sort_values(by=['total_score'], ascending=False) #分数越高即预测未来收益越高,排序默认降序 df_pos=df[df['total_score']>0] complex_factor_list = list(df_pos.index)[:int(0.1*len(list(df.index)))] q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(complex_factor_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) df = df[df['eps']>0] lst = list(df.code) lst = filter_paused_stock(lst) lst = filter_limitup_stock(context, lst) lst = filter_limitdown_stock(context, lst) lst = lst[:min(g.stock_num, len(lst))] for stock in lst: if stock not in final_list: final_list.append(stock) return final_list #1-3 整体调整持仓 def weekly_adjustment(context): if g.no_trading_today_signal == False: #获取应买入列表 target_list = get_stock_list(context) #调仓卖出 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.yesterday_HL_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("已持有[%s]" % (stock)) #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if context.portfolio.positions[stock].total_amount == 0: if open_position(stock, value): if len(context.portfolio.positions) == target_num: break #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68': stock_list.remove(stock) return stock_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=375)] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #4-1 判断今天是否为账户资金再平衡的日期 def today_is_between(context, start_date, end_date): today = context.current_dt.strftime('%m-%d') if (start_date <= today) and (today <= end_date): return True else: return False #4-2 清仓后次日资金可转 def close_account(context): if g.no_trading_today_signal == True: if len(g.hold_list) != 0: for stock in g.hold_list: position = context.portfolio.positions[stock] close_position(position) log.info("卖出[%s]" % (stock)) #4-3 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') ```
文章分类
关于作者
水滴
注册时间: