量化学习平台
文章
市场宽度
背离图
登录
注册
wywy1995大神机器学习策略年化提升版
策略
作者: 水滴
```python # 风险及免责提示:该策略由聚宽用户在聚宽社区分享,仅供学习交流使用。 # 原文一般包含策略说明,如有疑问请到原文和作者交流讨论。 # 原文网址:https://www.joinquant.com/post/41155 # 标题:wywy1995大神机器学习策略年化提升35pt # 作者:斯科尔斯 # https://www.joinquant.com/view/community/detail/30684f8d65a74eef0d704239f0eec8be?type=1&page=5 #导入函数库 from jqdata import * from jqfactor import * import numpy as np import pandas as pd import statsmodels.api as sm #初始化函数 def initialize(context): # 设定基准 set_benchmark('000300.XSHG') # 用真实价格交易 set_option('use_real_price', True) # 打开防未来函数 set_option("avoid_future_data", True) # 将滑点设置为0 set_slippage(FixedSlippage(0)) # 设置交易成本万分之三,不同滑点影响可在归因分析中查看 set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='stock') # 过滤order中低于error级别的日志 log.set_level('order', 'error') #初始化全局变量 g.stock_num = 10 g.hold_list = [] #当前持仓的全部股票 g.target_list = [] g.yesterday_HL_list = [] #记录持仓中昨日涨停的股票 g.not_buy_again = [] g.factor_list = [ 'price_no_fq', #技术指标因子 不复权价格因子 'total_profit_to_cost_ratio', #质量类因子 成本费用利润率 'inventory_turnover_rate' #质量类因子 存货周转率 ] # 设置交易运行时间 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') # 为了实盘的时候,买掉股票后可以立马成交,从而可以买入新股票,所以选择9:24 run_weekly(weekly_adjustment, 1, time='9:30', reference_security='000300.XSHG') run_daily(trade_morning,time='9:26',reference_security='000300.XSHG') run_daily(trade_afternoon, time='13:00', reference_security='000300.XSHG') #检查持仓中的涨停股是否需要卖出 #run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') #1-1 准备股票池 def prepare_stock_list(context): #获取已持有列表 g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) #获取昨日涨停列表 if g.hold_list != []: df = get_price(g.hold_list, end_date=context.previous_date, frequency='daily', fields=['close','high_limit'], count=1, panel=False, fill_paused=False) df = df[df['close'] == df['high_limit']] g.yesterday_HL_list = list(df.code) else: g.yesterday_HL_list = [] #提早准备今日股票list g.target_list = get_stock_list(context) #1-2 选股模块 def get_stock_list(context): yesterday = context.previous_date initial_list = get_all_securities().index.tolist() initial_list = filter_new_stock(context, initial_list) initial_list = filter_kcbj_stock(initial_list) initial_list = filter_st_stock(initial_list) factor_values = get_factor_values(initial_list, [ g.factor_list[0], g.factor_list[1], g.factor_list[2], ], end_date=yesterday, count=1) df = pd.DataFrame(index=initial_list, columns=factor_values.keys()) df[g.factor_list[0]] = list(factor_values[g.factor_list[0]].T.iloc[:,0]) df[g.factor_list[1]] = list(factor_values[g.factor_list[1]].T.iloc[:,0]) df[g.factor_list[2]] = list(factor_values[g.factor_list[2]].T.iloc[:,0]) df = df.dropna() coef_list = [ -6.123355346008858e-05, -0.002579342458393642, -2.194257357346814e-06 ] df['total_score'] = coef_list[0]*df[g.factor_list[0]] + coef_list[1]*df[g.factor_list[1]] + coef_list[2]*df[g.factor_list[2]] df = df.sort_values(by=['total_score'], ascending=False) #分数越高即预测未来收益越高,排序默认降序 complex_factor_list = list(df.index)[:max(int(0.1*len(list(df.index))),g.stock_num)] q = query(valuation.code,valuation.circulating_market_cap,indicator.eps).filter(valuation.code.in_(complex_factor_list)).order_by(valuation.circulating_market_cap.asc()) df = get_fundamentals(q) df = df[df['eps']>0] final_list = list(df.code) final_list = filter_paused_stock(final_list) final_list = filter_limitup_stock(context, final_list) final_list = filter_limitdown_stock(context, final_list) return final_list #1-3 整体调整持仓 def weekly_adjustment(context): g.not_buy_again = [] target_list = g.target_list #获取应买入列表 #截取不超过最大持仓数的股票量 target_list = target_list[:min(g.stock_num, len(target_list))] #调仓卖出 for stock in g.hold_list: if (stock not in target_list) and (stock not in g.yesterday_HL_list): log.info("卖出[%s]" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("持有[%s]" % (stock)) #调仓买入 buy_security(context,target_list) #记录已买入的股票 for position in list(context.portfolio.positions.values()): stock = position.security g.not_buy_again.append(stock) #微信通知 if context.run_params == 'sim_trade': weixin_message_text = '\n卖出:'.join(list(set(g.hold_list).difference(set(target_list))))\ +'\n买入:'.join(list(set(target_list).difference(set(g.hold_list)))) send_message(weixin_message_text,channel='weixin') #send_email(list(set(g.hold_list).difference(set(target_list))),list(set(target_list).difference(set(g.hold_list)))) #1-4 调整昨日涨停股票 def check_limit_up(context): now_time = context.current_dt if g.yesterday_HL_list != []: #对昨日涨停股票观察到尾盘如不涨停则提前卖出,如果涨停即使不在应买入列表仍暂时持有 for stock in g.yesterday_HL_list: current_data = get_price(stock, end_date=now_time, frequency='1m', fields=['close','high_limit'], skip_paused=False, fq='pre', count=1, panel=False, fill_paused=True) if current_data.iloc[0,0] < current_data.iloc[0,1]: log.info("[%s]涨停打开,卖出" % (stock)) position = context.portfolio.positions[stock] close_position(position) else: log.info("[%s]涨停,继续持有" % (stock)) #1-5 如果昨天有股票卖出或者买入失败,剩余的金额今天早上买入 def check_remain_amount(context): g.hold_list= [] for position in list(context.portfolio.positions.values()): stock = position.security g.hold_list.append(stock) if len(g.hold_list) < g.stock_num: print('有余额可用,多买入一只'+str(context.portfolio.cash)) target_list = g.target_list #剔除本周一曾买入的股票,不再买入 target_list = filter_not_buy_again(target_list) target_list = target_list[:min(g.stock_num, len(target_list))] buy_security(context,target_list) #1-6 下午检查交易 def trade_afternoon(context): check_limit_up(context) check_remain_amount(context) def trade_morning(context): # 周一不执行,因为周一主交易代码,这里只是补充,0代表周一 if context.current_dt.weekday() in (2,3,4,5): check_remain_amount(context) #2-1 过滤停牌股票 def filter_paused_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].paused] #2-2 过滤ST及其他具有退市标签的股票 def filter_st_stock(stock_list): current_data = get_current_data() return [stock for stock in stock_list if not current_data[stock].is_st and 'ST' not in current_data[stock].name and '*' not in current_data[stock].name and '退' not in current_data[stock].name] #2-3 过滤科创北交股票 def filter_kcbj_stock(stock_list): for stock in stock_list[:]: if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68' or stock[0] == '3': stock_list.remove(stock) return stock_list #2-4 过滤涨停的股票 def filter_limitup_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] < current_data[stock].high_limit] #2-5 过滤跌停的股票 def filter_limitdown_stock(context, stock_list): last_prices = history(1, unit='1m', field='close', security_list=stock_list) current_data = get_current_data() return [stock for stock in stock_list if stock in context.portfolio.positions.keys() or last_prices[stock][-1] > current_data[stock].low_limit] #2-6 过滤次新股 def filter_new_stock(context,stock_list): yesterday = context.previous_date return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=375)] #2-7 删除本周一买入的股票 def filter_not_buy_again(stock_list): return [stock for stock in stock_list if stock not in g.not_buy_again] #3-1 交易模块-自定义下单 def order_target_value_(security, value): if value == 0: log.debug("Selling out %s" % (security)) else: log.debug("Order %s to value %f" % (security, value)) return order_target_value(security, value) #3-2 交易模块-开仓 def open_position(security, value): order = order_target_value_(security, value) if order != None and order.filled > 0: return True return False #3-3 交易模块-平仓 def close_position(position): security = position.security order = order_target_value_(security, 0) # 可能会因停牌失败 if order != None: if order.status == OrderStatus.held and order.filled == order.amount: return True return False #3-4 卖出模块 def buy_security(context,target_list): #调仓买入 position_count = len(context.portfolio.positions) target_num = len(target_list) if target_num > position_count: value = context.portfolio.cash / (target_num - position_count) for stock in target_list: if stock not in context.portfolio.positions: if open_position(stock, value): log.info("买入[%s](%s元)" % (stock,value)) g.not_buy_again.append(stock) #持仓清单,后续不希望再买入 if len(context.portfolio.positions) == target_num: break #4-1 打印每日持仓信息 def print_position_info(context): #打印当天成交记录 trades = get_trades() for _trade in trades.values(): print('成交记录:'+str(_trade)) #打印账户信息 for position in list(context.portfolio.positions.values()): securities=position.security cost=position.avg_cost price=position.price ret=100*(price/cost-1) value=position.value amount=position.total_amount print('代码:{}'.format(securities)) print('成本价:{}'.format(format(cost,'.2f'))) print('现价:{}'.format(price)) print('收益率:{}%'.format(format(ret,'.2f'))) print('持仓(股):{}'.format(amount)) print('市值:{}'.format(format(value,'.2f'))) print('———————————————————————————————————') print('———————————————————————————————————————分割线————————————————————————————————————————') #4-2 发送邮件通知 def send_email(sell_list,buy_list): import smtplib from email.mime.text import MIMEText from email.header import Header sender = 'ch@sina.com' #发送的邮箱 receiver = 'si@sina.com' #要接受的邮箱(注:测试中发送其他邮箱会提示错误) smtpserver = 'smtp.sina.com' username = 'ch3@sina.com' #发送的邮箱 password = '54e7a4' #你的邮箱密码 或 口令 subject = '量化交易信号' message = sell_list.to_json()+'\n'+buy_list.to_json msg = MIMEText(message,'plain','utf-8') #中文需参数‘utf-8',单字节字符不需要 msg['Subject'] = Header(subject, 'utf-8') #邮件主题 msg['from'] = sender #发送的邮箱 msg['from'] = sender #发送的邮箱 smtp = smtplib.SMTP_SSL(smtpserver, 465) try: smtp.login(username, password) # 登陆 smtp.sendmail(sender, receiver, msg.as_string()) #发送 log.info('邮件发送成功') except smtplib.SMTPException: log.info('邮件发送失败') print("Error: 无法发送邮件") smtp.quit() # 结束 def after_code_changed(context): # 取消所有定时运行 unschedule_all() # 设置交易运行时间 run_daily(prepare_stock_list, time='9:05', reference_security='000300.XSHG') # 为了实盘的时候,买掉股票后可以立马成交,从而可以买入新股票,所以选择9:24卖出,26买入 run_weekly(weekly_adjustment, 1, time='9:30', reference_security='000300.XSHG') run_daily(trade_morning,time='9:26',reference_security='000300.XSHG') run_daily(trade_afternoon, time='13:00', reference_security='000300.XSHG') #检查持仓中的涨停股是否需要卖出 #run_daily(print_position_info, time='15:10', reference_security='000300.XSHG') ```
文章分类
关于作者
水滴
注册时间: